Literatura científica selecionada sobre o tema "Landscape evolution"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Landscape evolution".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Landscape evolution"
Ollier, C. D. "Laterite profiles, ferricrete and landscape evolution". Zeitschrift für Geomorphologie 35, n.º 2 (8 de agosto de 1991): 165–73. http://dx.doi.org/10.1127/zfg/35/1991/165.
Texto completo da fonteHancock, G. R., G. R. Willgoose e John Lowry. "Transient landscapes: gully development and evolution using a landscape evolution model". Stochastic Environmental Research and Risk Assessment 28, n.º 1 (27 de junho de 2013): 83–98. http://dx.doi.org/10.1007/s00477-013-0741-y.
Texto completo da fonteBerthling, Ivar, e Bernd Etzelmüller. "The concept of cryo-conditioning in landscape evolution". Quaternary Research 75, n.º 2 (março de 2011): 378–84. http://dx.doi.org/10.1016/j.yqres.2010.12.011.
Texto completo da fonteTucker, Gregory E., e Gregory R. Hancock. "Modelling landscape evolution". Earth Surface Processes and Landforms 35, n.º 1 (janeiro de 2010): 28–50. http://dx.doi.org/10.1002/esp.1952.
Texto completo da fonteNabieva, Elena, e Georgii A. Bazykin. "SELVa: Simulator of evolution with landscape variation". PLOS ONE 15, n.º 12 (2 de dezembro de 2020): e0242225. http://dx.doi.org/10.1371/journal.pone.0242225.
Texto completo da fontede Jong, Jolanda, e Sven Stremke. "Evolution of Energy Landscapes: A Regional Case Study in the Western Netherlands". Sustainability 12, n.º 11 (3 de junho de 2020): 4554. http://dx.doi.org/10.3390/su12114554.
Texto completo da fonteIwasawa, Junichiro, Tomoya Maeda, Atsushi Shibai, Hazuki Kotani, Masako Kawada e Chikara Furusawa. "Analysis of the evolution of resistance to multiple antibiotics enables prediction of the Escherichia coli phenotype-based fitness landscape". PLOS Biology 20, n.º 12 (13 de dezembro de 2022): e3001920. http://dx.doi.org/10.1371/journal.pbio.3001920.
Texto completo da fonteLi, Ye, e Claus O. Wilke. "Digital Evolution in Time-Dependent Fitness Landscapes". Artificial Life 10, n.º 2 (março de 2004): 123–34. http://dx.doi.org/10.1162/106454604773563559.
Texto completo da fonteZheng, Liming, e Shiqi Luo. "Adaptive Differential Evolution Algorithm Based on Fitness Landscape Characteristic". Mathematics 10, n.º 9 (1 de maio de 2022): 1511. http://dx.doi.org/10.3390/math10091511.
Texto completo da fonteYu, Linjun, Xiaotong Zhang, Feng He e Xiaojun Wang. "Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China". Sustainability 14, n.º 21 (28 de outubro de 2022): 14022. http://dx.doi.org/10.3390/su142114022.
Texto completo da fonteTeses / dissertações sobre o assunto "Landscape evolution"
Martin, Yvonne. "Modelling geomorphology in landscape evolution". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0030/NQ27198.pdf.
Texto completo da fonteHurst, Martin David. "Hillslope morphology as an indicator of landscape evolution in tectonically active landscapes". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/12228.
Texto completo da fonteJamieson, Stewart S. R. "Modelling landscape evolution under ice sheets". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29818.
Texto completo da fonteBoardman, John. "Landscape evolution over Pleistocene and modern timescales". Thesis, Keele University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400115.
Texto completo da fonteBosch, Rachel. "Landscape Evolution of the Central Kentucky Karst". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627665906577779.
Texto completo da fonteOdoni, Nicholas Alan. "Exploring equifinality in a landscape evolution model". Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/153687/.
Texto completo da fonteNicholson, Uisdean A. M. "Landscape evolution and sediment routing across a strike-slip plate boundary". Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted: no access until July 20, 2014, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=59100.
Texto completo da fonteBaran, Ramona. "Quantification of landscape evolution on multiple time-scales". Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-148038.
Texto completo da fonteCARBONO, ALONSO JOAQUIN JUVINAO. "COMPUTER SIMULATION OF LANDSCAPE EVOLUTION OF DRAINAGE BASINS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21617@1.
Texto completo da fonteA superfície da terra é formada por processos geológicos que geram as rochas, assim como por processos naturais de degradação e de erosão. A erosão destrói as estruturas que compõem o solo e seu transporte é feito pela ação da água da chuva, do vento, da gravidade e até do gelo. A origem e evolução das bacias sedimentares, dentre outros fenômenos, é estudada pela geologia sedimentar, a qual trata do estudo dos processos físicos, químicos e biológicos atuantes na superfície da terra desde o seu início até os dias atuais. Na atualidade, o uso de modelos que permitem analisar processos de escoamento superficial, desprendimento de partículas e de transporte e deposição de sedimentos em bacias hidrográficas é cada vez mais frequente. O uso e análise desses modelos demonstra que, para escalas relativamente pequenas e áreas não muito extensas, o rebaixamento do perfil dos rios está diretamente ligado aos processos de deformação tectônica. Por outro lado, modelos de previsão de evolução do relevo associados com intemperismo, erosão e deposição de sedimentos, considerando escalas espaciais do tipo regional ou continental e escalas de tempo relativamente grandes (maior que 10(5) anos) devem ser desenvolvidos acoplando tanto efeitos tectônicos como morfológicos. Neste trabalho é apresentado um modelo computacional que permite analisar a evolução na mudança do relevo de bacias hidrográficas, em pequena e grande escala, assim como estimar a produção de sedimento resultante do processo erosivo. O algoritmo de análise é escrito na linguagem de programação Cmais mais e considera a simulação de diferentes cenários, que incluem deformação tectônica, processos de encosta (difusão e movimentos de massa) e processos de incisão fluvial, dando-se particular atenção à formação e evolução da rede fluvial de drenagem. Para a análise de resultados, o programa oferece a visualização 3D de diferentes superfícies: distribuição dos sedimentos, evolução da rede fluvial, mudanças topográficas do relevo, etc.
The surface of the earth is formed by geological processes that originate the rocks, as well as for natural processes of degradation and erosion. The erosion destroys the soil structures and the transport of sediments is made by the action of the rain water, wind, gravity and, in some cases, ice. The origin and evolution of sedimentary basins, amongst other phenomena, are studied by the sedimentary geology, which deals with the analysis of physical, chemical and biological processes that act directly on earth surface since its origin until the current days. Nowadays, the use of runoff - erosion models that analyze processes such as detachment of particles and transport and deposition of sediment in drainage basins is every time more frequent. The use of these models demonstrates that, for relatively small scales and not very extensive areas, relief changes are directly related to tectonic processes. On the other hand, landscape evolution models and associated weathering, erosion and deposition with parameterization for regional or continental spatial scales and large time scales (more than 10(5) years), must be developed to adequately couple tectonics and geomorphology. Is presented in this work a computational model to analyze the landscape evolution in hydrographic basins, considering small and large scales, as well as evaluate the production of sediment resultant of the erosive process. The algorithm is written in the programming language C++ and considers the simulation of different scenes, that include tectonics, hillslope processes (diffusion and landslides) and bedrock incision, giving particular attention to the channel network evolution. For the analysis process the program offers the visualization of different 3D surfaces: sediment distribution, drainage network, topographical relieves etc.
Richardson, Paul William Ph D. Massachusetts Institute of Technology. "Topographic asymmetry and climate controls on landscape evolution". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101346.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 145-157).
Landscapes are expected to evolve differently under the influence of different climate conditions. However, the relationship between landscape evolution and climate is not well understood. I investigate the relationship between landscape evolution and climate by using natural experiments in which climate varies with slope aspect (geographic orientation) and causes differences in landscape form, such as steeper equator- or pole-facing slopes. In order to understand which mechanisms are responsible for the development of this topographic asymmetry, I adapted a numerical landscape evolution model to include different asymmetry-forming mechanisms such as aspect-induced variations in soil creep intensity, regolith strength, and runoff, and also lateral channel migration. Numerical experiments reveal topographic signatures associated with each of these mechanisms that can be compared with field sites that exhibit asymmetry. I used these numerical model results, along with estimates of field-saturated hydraulic conductivity, soil strength, evidence of stream capture and channel beheadings, and erosion rates determined from cosmogenic radionuclides to determine which asymmetry forming mechanisms are likely responsible for the topographic asymmetry at Gabilan Mesa, a landscape in the central California Coast Ranges. I find that aspect-dependent differences in runoff are most likely responsible for the bulk of the asymmetry at Gabilan Mesa, but lateral channel migration has contributed to the asymmetry in some locations. To further investigate climate's influence on landscape evolution, I compiled new and previously published estimates of slope-dependent soil transport efficiency across a range of climates. I find that soil transport efficiency increases with mean annual precipitation and the aridity index, a measure that describes water availability for plants. I also find that soil transport efficiency varies with lithology and that different measurement techniques can bias estimates of the soil transport coefficient.
by Paul William Richardson.
Ph. D.
Livros sobre o assunto "Landscape evolution"
Carson, Mike T. Archaeological Landscape Evolution. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31400-6.
Texto completo da fonteA, Robinson D., e Williams R. B. G, eds. Rock weathering and landform evolution. Chichester: Wiley, 1994.
Encontre o texto completo da fonte1942-, Boardman John, e Quaternary Research Association (Great Britain), eds. Soils and quaternary landscape evolution. Chichester [West Sussex]: Wiley, 1985.
Encontre o texto completo da fonte1960-, Willett Sean D., ed. Tectonics, climate, and landscape evolution. Boulder, Colo: Geological Society of America, 2006.
Encontre o texto completo da fonteHoorn, C., e F. P. Wesselingh, eds. Amazonia: Landscape and Species Evolution. Oxford, UK: Wiley-Blackwell Publishing Ltd., 2009. http://dx.doi.org/10.1002/9781444306408.
Texto completo da fonteHarmon, Russell S., e William W. Doe, eds. Landscape Erosion and Evolution Modeling. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0575-4.
Texto completo da fonteFestival d'histoire de Montbrison (6th 1996). Evolution et représentation du paysage de 1750 à nos jours. Montbrison: Ville de Montbrison, 1997.
Encontre o texto completo da fonteAfrican palaeoenvironments and geomorphic landscape evolution. Boca Raton, Fla: CRC Press/Balkema, 2010.
Encontre o texto completo da fonteMichaux, Bernard. Biogeology: Evolution in a Changing Landscape. Boca Raton : CRC Press, [2020] | Series: CRC biogeography series: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053443.
Texto completo da fonteSchumer, Beryl. Wychwood: The evolution of a wooded landscape. 2a ed. Charlbury: Wychwood Press, 1999.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Landscape evolution"
Fowler, Andrew. "Landscape Evolution". In Interdisciplinary Applied Mathematics, 331–85. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-721-1_6.
Texto completo da fonteKelly, Ian. "Landscape Evolution". In Hong Kong, 42–75. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-08784-6_3.
Texto completo da fonteShekhar, Shashi, e Hui Xiong. "Evolution, Landscape". In Encyclopedia of GIS, 291. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_386.
Texto completo da fonteBryant, Edward. "Coastal Landscape Evolution". In Tsunami, 63–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06133-7_4.
Texto completo da fontevan der Beek, Peter. "Modelling Landscape Evolution". In Environmental Modelling, 309–31. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118351475.ch19.
Texto completo da fonteAntrop, Marc, e Veerle Van Eetvelde. "Landscape Dynamics and Evolution". In Landscape Series, 141–76. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1183-6_7.
Texto completo da fonteCarson, Mike T. "Landscape Evolution as Natural–Cultural History". In Archaeological Landscape Evolution, 3–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31400-6_1.
Texto completo da fonteCarson, Mike T. "700 B.C.–A.D. 1, Broadened Horizons". In Archaeological Landscape Evolution, 183–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31400-6_10.
Texto completo da fonteCarson, Mike T. "A.D. 1–500, Temporary Stability". In Archaeological Landscape Evolution, 199–210. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31400-6_11.
Texto completo da fonteCarson, Mike T. "A.D. 500–1000, Sustained Use of Coastal and Inland Zones". In Archaeological Landscape Evolution, 211–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31400-6_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Landscape evolution"
Chojnacki, Matthew, e Anna Urso. "AEOLIAN-DRIVEN LANDSCAPE EVOLUTION ON MARS". In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-282197.
Texto completo da fonte"Gully development, evolution and erosion using a landscape evolution model". In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.f3.hancock.
Texto completo da fonteUludag, Gonul, e A. Sima Uyar. "Fitness landscape analysis of differential evolution algorithms". In 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. IEEE, 2009. http://dx.doi.org/10.1109/icsccw.2009.5379477.
Texto completo da fonteLebrun, M., J. Darbon e J. M. Morel. "A Numerical Implementation of Landscape Evolution Models". In Second Conference on Forward Modelling of Sedimentary Systems. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201600381.
Texto completo da fontePhillips, Zachary. "LANDSCAPE EVOLUTION MODELING OF GIA-ASSISTED CHANNEL AVULSIONS IN LOW RELIEF RIVERINE LANDSCAPES". In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-318623.
Texto completo da fonteLavagetto, G., F. D’Antona, L. Burderi, T. Di Salvo, R. Iaria e N. R. Robba. "Binary evolution of PSR J1713+0747". In THE MULTICOLORED LANDSCAPE OF COMPACT OBJECTS AND THEIR EXPLOSIVE ORIGINS. American Institute of Physics, 2007. http://dx.doi.org/10.1063/1.2774926.
Texto completo da fonteCovington, Matthew D., Matija Perne, Evan Thaler e Joseph Myre. "MODELING LANDSCAPE EVOLUTION WITHIN LAYERED ROCKS: WHITHER EQUILIBRIUM?" In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306991.
Texto completo da fonteSallam, Karam, Saber Elsayed, Ruhul Sarker e Daryl Essam. "Landscape-Based Differential Evolution for Constrained Optimization Problems". In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. http://dx.doi.org/10.1109/cec.2018.8477900.
Texto completo da fonteNeill, James D., M. Sullivan, D. Balam, C. J. Pritchet, D. A. Howell, K. Perrett, P. Astier et al. "The Supernova Type Ia Rate Evolution with SNLS". In THE MULTICOLORED LANDSCAPE OF COMPACT OBJECTS AND THEIR EXPLOSIVE ORIGINS. American Institute of Physics, 2007. http://dx.doi.org/10.1063/1.2774890.
Texto completo da fonteWagner, J. Sage, Catherine A. Rigsby, Cleverson G. Silva e Paul A. Baker. "SEISMOSTRATIGRAPHIC ARCHITECTURE OF CENTRAL AMAZONIA: MESO-CENOZOIC LANDSCAPE EVOLUTION". In 65th Annual Southeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016se-273122.
Texto completo da fonteRelatórios de organizações sobre o assunto "Landscape evolution"
Walker, D. A., e M. D. Walker. Landscape dynamics in the Arctic foothills: Landscape evolution and vegetation succession on disturbances. Office of Scientific and Technical Information (OSTI), outubro de 1990. http://dx.doi.org/10.2172/6179258.
Texto completo da fonteVreeken, W. J. Geomorphic surfaces and postglacial landscape evolution of the Maple Creek basin, Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/211124.
Texto completo da fonteCollins, Daniel B., Gregory E. Tucker, Nicole M. Gasparini e Rafael L. Bras. Application of a Landscape Evolution Model to Gully Management and Reclamation on Military Lands: Fort Carson, CO Case Study. Fort Belvoir, VA: Defense Technical Information Center, março de 2000. http://dx.doi.org/10.21236/ada378825.
Texto completo da fonteBrodie, Katherine, Ian Conery, Nicholas Cohn, Nicholas Spore e Margaret Palmsten. Spatial variability of coastal foredune evolution, part A : timescales of months to years. Engineer Research and Development Center (U.S.), julho de 2021. http://dx.doi.org/10.21079/11681/41322.
Texto completo da fonteHart, Lucy. Understanding platform businesses in the food ecosystem. Food Standards Agency, fevereiro de 2022. http://dx.doi.org/10.46756/sci.fsa.puh821.
Texto completo da fonteGillespie, Rebecca, e Stephanie Friend. Trends in Twitter conversations about food during 2019-20. Food Standards Agency, março de 2022. http://dx.doi.org/10.46756/sci.fsa.lbs663.
Texto completo da fonteDominic Evangelista, Dominic Evangelista. How do tropical landscapes drive insect evolution? Experiment, agosto de 2013. http://dx.doi.org/10.18258/1139.
Texto completo da fonteWolfe, S. A., H. B. O'Neill, C. Duchesne, D. Froese, J M Young e S. V. Kokelj. Ground ice degradation and thermokarst terrain formation in Canada over the past 16 000 years. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329668.
Texto completo da fonteLeckie, D. A., e G. C. Nadon. Evolution of fluvial landscapes in the Western Canada Foreland Basin: Late Jurassic to the modern. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/209372.
Texto completo da fontePillay, Hitendra, e Brajesh Pant. Foundational ( K-12) Education System: Navigating 21st Century Challenges. QUT and Asian Development Bank, 2022. http://dx.doi.org/10.5204/rep.eprints.226350.
Texto completo da fonte