Artigos de revistas sobre o tema "Laminar breakdown"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Laminar breakdown".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Li, Ning, e Qi Hong Zeng. "Direct Numerical Simulation on Transition of an Incompressible Boundary Layer on a Flat Plate". Applied Mechanics and Materials 268-270 (dezembro de 2012): 1143–47. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1143.
Texto completo da fonteKadyirov, A. I., e B. R. Abaydullin. "Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid". Journal of Physics: Conference Series 899 (setembro de 2017): 022009. http://dx.doi.org/10.1088/1742-6596/899/2/022009.
Texto completo da fonteZhou, Teng, Zaijie Liu, Yuhan Lu, Ying Wang e Chao Yan. "Direct numerical simulation of complete transition to turbulence via first- and second-mode oblique breakdown at a high-speed boundary layer". Physics of Fluids 34, n.º 7 (julho de 2022): 074101. http://dx.doi.org/10.1063/5.0094069.
Texto completo da fonteSeifi, Zeinab, Mehrdad Raisee e Michel J. Cervantes. "Optimal flow control of vortex breakdown in a laminar swirling flow". Journal of Physics: Conference Series 2707, n.º 1 (1 de fevereiro de 2024): 012129. http://dx.doi.org/10.1088/1742-6596/2707/1/012129.
Texto completo da fonteKachanov, Yu S. "On the resonant nature of the breakdown of a laminar boundary layer". Journal of Fluid Mechanics 184 (novembro de 1987): 43–74. http://dx.doi.org/10.1017/s0022112087002805.
Texto completo da fonteBottaro, Alessandro, Inge L. Ryhming, Marc B. Wehrli, Franz S. Rys e Paul Rys. "Laminar swirling flow and vortex breakdown in a pipe". Computer Methods in Applied Mechanics and Engineering 89, n.º 1-3 (agosto de 1991): 41–57. http://dx.doi.org/10.1016/0045-7825(91)90036-6.
Texto completo da fonteOzdemir, Celalettin E., Tian-Jian Hsu e S. Balachandar. "Direct numerical simulations of instability and boundary layer turbulence under a solitary wave". Journal of Fluid Mechanics 731 (28 de agosto de 2013): 545–78. http://dx.doi.org/10.1017/jfm.2013.361.
Texto completo da fonteZAKI, TAMER A., JAN G. WISSINK, WOLFGANG RODI e PAUL A. DURBIN. "Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence". Journal of Fluid Mechanics 665 (27 de outubro de 2010): 57–98. http://dx.doi.org/10.1017/s0022112010003873.
Texto completo da fonteJost, Dominic, e Kai Nagel. "Probabilistic Traffic Flow Breakdown in Stochastic Car-Following Models". Transportation Research Record: Journal of the Transportation Research Board 1852, n.º 1 (janeiro de 2003): 152–58. http://dx.doi.org/10.3141/1852-19.
Texto completo da fonteZang, Thomas A., e M. Yousuff Hussaini. "Multiple paths to subharmonic laminar breakdown in a boundary layer". Physical Review Letters 64, n.º 6 (5 de fevereiro de 1990): 641–44. http://dx.doi.org/10.1103/physrevlett.64.641.
Texto completo da fonteSansica, Andrea, Neil D. Sandham e Zhiwei Hu. "Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble". Journal of Fluid Mechanics 798 (31 de maio de 2016): 5–26. http://dx.doi.org/10.1017/jfm.2016.297.
Texto completo da fonteIncropera, F. P., A. L. Knox e J. R. Maughan. "Mixed-Convection Flow and Heat Transfer in the Entry Region of a Horizontal Rectangular Duct". Journal of Heat Transfer 109, n.º 2 (1 de maio de 1987): 434–39. http://dx.doi.org/10.1115/1.3248100.
Texto completo da fonteSHAIKH, F. N. "Investigation of transition to turbulence using white-noise excitation and local analysis techniques". Journal of Fluid Mechanics 348 (10 de outubro de 1997): 29–83. http://dx.doi.org/10.1017/s0022112097006629.
Texto completo da fonteFranko, Kenneth J., e Sanjiva K. Lele. "Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers". Journal of Fluid Mechanics 730 (1 de agosto de 2013): 491–532. http://dx.doi.org/10.1017/jfm.2013.350.
Texto completo da fonteJovanovic, Jovan, e Mira Pashtrapanska. "On the evolution of laminar to turbulent transition and breakdown to turbulence". Thermal Science 7, n.º 2 (2003): 59–76. http://dx.doi.org/10.2298/tsci0302059j.
Texto completo da fonteNering, Konrad, e Kazimierz Rup. "An improved algebraic model for by-pass transition for calculation of transitional flow in pipe and parallel-plate channels". Thermal Science 23, Suppl. 4 (2019): 1123–31. http://dx.doi.org/10.2298/tsci19s4123n.
Texto completo da fonteLopez, J. M. "Axisymmetric vortex breakdown Part 1. Confined swirling flow". Journal of Fluid Mechanics 221 (dezembro de 1990): 533–52. http://dx.doi.org/10.1017/s0022112090003664.
Texto completo da fonteWu, Xiaohua, Parviz Moin, Ronald J. Adrian e Jon R. Baltzer. "Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence". Proceedings of the National Academy of Sciences 112, n.º 26 (15 de junho de 2015): 7920–24. http://dx.doi.org/10.1073/pnas.1509451112.
Texto completo da fonteJovanovic, Jovan, e Mina Nishi. "The origin of turbulence in wall-bounded flows". Thermal Science 21, suppl. 3 (2017): 565–72. http://dx.doi.org/10.2298/tsci160413184j.
Texto completo da fonteLUO, Jisheng. "Inherent mechanism of breakdown in laminar-turbulent transition of plane channel flows". Science in China Series G 48, n.º 2 (2005): 228. http://dx.doi.org/10.1360/04yw0168.
Texto completo da fonteTian, Zhaohua, Meirong Dong, Shishi Li e Jidong Lu. "Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane–air flames". Spectrochimica Acta Part B: Atomic Spectroscopy 136 (outubro de 2017): 8–15. http://dx.doi.org/10.1016/j.sab.2017.08.001.
Texto completo da fonteSalas, M. D., e G. Kuruvila. "Vortex breakdown simulation: A circumspect study of the steady, laminar, axisymmetric model". Computers & Fluids 17, n.º 1 (janeiro de 1989): 247–62. http://dx.doi.org/10.1016/0045-7930(89)90020-0.
Texto completo da fontePruett, C. D., e T. A. Zang. "Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layers". Theoretical and Computational Fluid Dynamics 3, n.º 6 (setembro de 1992): 345–67. http://dx.doi.org/10.1007/bf00417933.
Texto completo da fonteSivasubramanian, Jayahar, e Hermann F. Fasel. "Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown". Journal of Fluid Mechanics 768 (10 de março de 2015): 175–218. http://dx.doi.org/10.1017/jfm.2014.678.
Texto completo da fonteJovanovic´, J., e M. Pashtrapanska. "On the Criterion for the Determination Transition Onset and Breakdown to Turbulence in Wall-Bounded Flows1". Journal of Fluids Engineering 126, n.º 4 (1 de julho de 2004): 626–33. http://dx.doi.org/10.1115/1.1779663.
Texto completo da fonteGumowski, K., e S. Kubacki. "Experimental study of laminar-to-turbulent transition in an adverse pressure gradient flow". Journal of Physics: Conference Series 2367, n.º 1 (1 de novembro de 2022): 012018. http://dx.doi.org/10.1088/1742-6596/2367/1/012018.
Texto completo da fonteZuikov, Andrey L., e Elena V. Bazhina. "Viscous stress tensor and stability of laminar contravortical flows". Vestnik MGSU, n.º 7 (julho de 2019): 870–84. http://dx.doi.org/10.22227/1997-0935.2019.7.870-884.
Texto completo da fonteThomson, K. D. "Some comments on the later stages of transition from laminar to turbulent flow in the flat plate boundary layer". Aeronautical Journal 92, n.º 918 (outubro de 1988): 309–14. http://dx.doi.org/10.1017/s0001924000016341.
Texto completo da fonteWatmuff, Jonathan H. "Effects of Weak Free Stream Nonuniformity on Boundary Layer Transition". Journal of Fluids Engineering 128, n.º 2 (4 de abril de 2005): 247–57. http://dx.doi.org/10.1115/1.2169813.
Texto completo da fonteChew, J. W. "Computation of Forced Laminar Convection in Rotating Cavities". Journal of Heat Transfer 107, n.º 2 (1 de maio de 1985): 277–82. http://dx.doi.org/10.1115/1.3247411.
Texto completo da fonteWang, Meng, Sanjiva K. Lele e Parviz Moin. "Sound radiation during local laminar breakdown in a low-Mach-number boundary layer". Journal of Fluid Mechanics 319, n.º -1 (julho de 1996): 197. http://dx.doi.org/10.1017/s0022112096007318.
Texto completo da fonteKro¨ner, M., J. Fritz e T. Sattelmayer. "Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner". Journal of Engineering for Gas Turbines and Power 125, n.º 3 (1 de julho de 2003): 693–700. http://dx.doi.org/10.1115/1.1582498.
Texto completo da fonteSkripkin, S. G. "Parametric study of cone angle influence on bubble vortex breakdown onset in laminar conical flow at various swirl numbers". Journal of Physics: Conference Series 2119, n.º 1 (1 de dezembro de 2021): 012019. http://dx.doi.org/10.1088/1742-6596/2119/1/012019.
Texto completo da fonteXu, Guoliang, e Song Fu. "A Four-Equation Eddy-Viscosity Approach for Modeling Bypass Transition". Advances in Applied Mathematics and Mechanics 6, n.º 4 (agosto de 2014): 523–38. http://dx.doi.org/10.4208/aamm.2013.m266.
Texto completo da fonteYU, PENG, T. S. LEE, Y. ZENG e H. T. LOW. "EFFECT OF VORTEX BREAKDOWN ON MASS TRANSFER IN A CELL CULTURE BIOREACTOR". Modern Physics Letters B 19, n.º 28n29 (20 de dezembro de 2005): 1543–46. http://dx.doi.org/10.1142/s0217984905009869.
Texto completo da fonteWILLIAMSON, N., N. SRINARAYANA, S. W. ARMFIELD, G. D. McBAIN e W. LIN. "Low-Reynolds-number fountain behaviour". Journal of Fluid Mechanics 608 (11 de julho de 2008): 297–317. http://dx.doi.org/10.1017/s0022112008002310.
Texto completo da fonteHAIN, R., C. J. KÄHLER e R. RADESPIEL. "Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils". Journal of Fluid Mechanics 630 (10 de julho de 2009): 129–53. http://dx.doi.org/10.1017/s0022112009006661.
Texto completo da fonteASAI, MASAHITO, MASAYUKI MINAGAWA e MICHIO NISHIOKA. "The instability and breakdown of a near-wall low-speed streak". Journal of Fluid Mechanics 455 (25 de março de 2002): 289–314. http://dx.doi.org/10.1017/s0022112001007431.
Texto completo da fonteKumar, Vivaswat, Federico Pizzi, André Giesecke, Ján Šimkanin, Thomas Gundrum, Matthias Ratajczak e Frank Stefani. "The effect of nutation angle on the flow inside a precessing cylinder and its dynamo action". Physics of Fluids 35, n.º 1 (janeiro de 2023): 014114. http://dx.doi.org/10.1063/5.0134562.
Texto completo da fonteMoise, Pradeep, e Joseph Mathew. "Bubble and conical forms of vortex breakdown in swirling jets". Journal of Fluid Mechanics 873 (24 de junho de 2019): 322–57. http://dx.doi.org/10.1017/jfm.2019.401.
Texto completo da fonteCheng, K. C., e Y. W. Kim. "Flow Visualization Studies on Vortex Instability of Natural Convection Flow Over Horizontal and Slightly Inclined Constant-Temperature Plates". Journal of Heat Transfer 110, n.º 3 (1 de agosto de 1988): 608–15. http://dx.doi.org/10.1115/1.3250536.
Texto completo da fonteWalker, G. J., e J. P. Gostelow. "Effects of Adverse Pressure Gradients on the Nature and Length of Boundary Layer Transition". Journal of Turbomachinery 112, n.º 2 (1 de abril de 1990): 196–205. http://dx.doi.org/10.1115/1.2927633.
Texto completo da fonteDi Giovanni, Antonio, e Christian Stemmer. "Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration". Journal of Fluid Mechanics 856 (5 de outubro de 2018): 470–503. http://dx.doi.org/10.1017/jfm.2018.706.
Texto completo da fonteBrinkerhoff, Joshua R., e Metin I. Yaras. "Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence". Journal of Fluid Mechanics 781 (16 de setembro de 2015): 52–86. http://dx.doi.org/10.1017/jfm.2015.457.
Texto completo da fonteNering, Konrad, e Kazimierz Rup. "Modified algebraic model of laminar-turbulent transition for internal flows". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 4 (21 de janeiro de 2019): 1743–53. http://dx.doi.org/10.1108/hff-10-2018-0597.
Texto completo da fonteZuikov, Andrey, e Genrikh Orekhov. "Hydrodynamic structure of laminar flows with oppositely-swirled coaxial layers". MATEC Web of Conferences 265 (2019): 02022. http://dx.doi.org/10.1051/matecconf/201926502022.
Texto completo da fonteMATTNER, T. W., P. N. JOUBERT e M. S. CHONG. "Vortical flow. Part 1. Flow through a constant-diameter pipe". Journal of Fluid Mechanics 463 (25 de julho de 2002): 259–91. http://dx.doi.org/10.1017/s0022112002008741.
Texto completo da fonteValencia, Alvaro. "Pulsating Flow in a Channel With a Backward-Facing Step". Applied Mechanics Reviews 50, n.º 11S (1 de novembro de 1997): S232—S236. http://dx.doi.org/10.1115/1.3101841.
Texto completo da fonteKamiyo, Ola, e Abimbola Dada. "Laminar Natural Convection in Attics of Rooftops with Depressed Walls". FUOYE Journal of Engineering and Technology 9, n.º 2 (2 de agosto de 2024): 258–64. http://dx.doi.org/10.4314/fuoyejet.v9i2.15.
Texto completo da fonteMishra, Pratima, Rohit Kumar e Awadhesh Kumar Rai. "Development and optimization of experimental parameters for the detection of trace of heavy metal (Cr) in liquid samples using laser-induced breakdown spectroscopy technique". Journal of Laser Applications 35, n.º 2 (maio de 2023): 022021. http://dx.doi.org/10.2351/7.0000959.
Texto completo da fonte