Artigos de revistas sobre o tema "Lagrangian particle methods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lagrangian particle methods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chakraborty, Rishiraj, Aaron Coutino e Marek Stastna. "Particle clustering and subclustering as a proxy for mixing in geophysical flows". Nonlinear Processes in Geophysics 26, n.º 3 (16 de setembro de 2019): 307–24. http://dx.doi.org/10.5194/npg-26-307-2019.
Texto completo da fonteRabczuk, T., T. Belytschko e S. P. Xiao. "Stable particle methods based on Lagrangian kernels". Computer Methods in Applied Mechanics and Engineering 193, n.º 12-14 (março de 2004): 1035–63. http://dx.doi.org/10.1016/j.cma.2003.12.005.
Texto completo da fonteHealy, D. P., e J. B. Young. "Full Lagrangian methods for calculating particle concentration fields in dilute gas-particle flows". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, n.º 2059 (15 de junho de 2005): 2197–225. http://dx.doi.org/10.1098/rspa.2004.1413.
Texto completo da fonteYan, Shiqiang, Q. W. Ma e Jinghua Wang. "Quadric SFDI for Laplacian Discretisation in Lagrangian Meshless Methods". Journal of Marine Science and Application 19, n.º 3 (setembro de 2020): 362–80. http://dx.doi.org/10.1007/s11804-020-00159-x.
Texto completo da fonteOyinbo, Sunday Temitope, e Tien-Chien Jen. "Feasibility of numerical simulation methods on the Cold Gas Dynamic Spray (CGDS) Deposition process for ductile materials". Manufacturing Review 7 (2020): 24. http://dx.doi.org/10.1051/mfreview/2020023.
Texto completo da fonteCampos Pinto, Martin, e Frédérique Charles. "From particle methods to forward-backward Lagrangian schemes". SMAI journal of computational mathematics 4 (27 de março de 2018): 121–50. http://dx.doi.org/10.5802/smai-jcm.31.
Texto completo da fonteNordam, Tor, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille e Andy M. Booth. "A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column". Geoscientific Model Development 16, n.º 18 (19 de setembro de 2023): 5339–63. http://dx.doi.org/10.5194/gmd-16-5339-2023.
Texto completo da fonteWang, Yukun, Jingnan Sun, Meng Zhao, Alicia Murga, Sung-Jun Yoo, Kazuhide Ito e Zhengwei Long. "Numerical Study of Indoor Oil Mist Particle Concentration Distribution in an Industrial Factory Using the Eulerian–Eulerian and Eulerian–Lagrangian Methods". Fluids 8, n.º 10 (26 de setembro de 2023): 264. http://dx.doi.org/10.3390/fluids8100264.
Texto completo da fonteFloryan, J. M., e H. Rasmussen. "Numerical Methods for Viscous Flows With Moving Boundaries". Applied Mechanics Reviews 42, n.º 12 (1 de dezembro de 1989): 323–41. http://dx.doi.org/10.1115/1.3152416.
Texto completo da fonteDavis, Sean L., Gustaaf B. Jacobs, Oishik Sen e H. S. Udaykumar. "SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, n.º 2199 (março de 2017): 20160769. http://dx.doi.org/10.1098/rspa.2016.0769.
Texto completo da fonteGaugele, T., F. Fleissner e P. Eberhard. "Simulation of material tests using meshfree Lagrangian particle methods". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 222, n.º 4 (dezembro de 2008): 327–38. http://dx.doi.org/10.1243/14644193jmbd167.
Texto completo da fonteRutherford, B., e M. T. Montgomery. "A Lagrangian analysis of a developing and non-developing disturbance observed during the PREDICT experiment". Atmospheric Chemistry and Physics Discussions 11, n.º 12 (19 de dezembro de 2011): 33273–323. http://dx.doi.org/10.5194/acpd-11-33273-2011.
Texto completo da fonteRicker, Marcel, e Emil V. Stanev. "Circulation of the European northwest shelf: a Lagrangian perspective". Ocean Science 16, n.º 3 (25 de maio de 2020): 637–55. http://dx.doi.org/10.5194/os-16-637-2020.
Texto completo da fonteNamazian, Z., A. F. Najafi e S. M. Mousavian. "Numerical Simulation of Particle-Gas Flow Through a Fixed Pipe, Using One-Way and Two-Way Coupling Methods". Journal of Mechanics 33, n.º 2 (15 de julho de 2016): 205–12. http://dx.doi.org/10.1017/jmech.2016.53.
Texto completo da fonteColagrossi, Andrea, Emanuele Rossi, Salvatore Marrone e David Le Touzé. "Particle Methods for Viscous Flows: Analogies and Differences Between the SPH and DVH Methods". Communications in Computational Physics 20, n.º 3 (31 de agosto de 2016): 660–88. http://dx.doi.org/10.4208/cicp.150915.170316a.
Texto completo da fonteRutherford, B., e M. T. Montgomery. "A Lagrangian analysis of a developing and non-developing disturbance observed during the PREDICT experiment". Atmospheric Chemistry and Physics 12, n.º 23 (3 de dezembro de 2012): 11355–81. http://dx.doi.org/10.5194/acp-12-11355-2012.
Texto completo da fonteCottet, Georges-Henri. "Semi-Lagrangian particle methods for high-dimensional Vlasov–Poisson systems". Journal of Computational Physics 365 (julho de 2018): 362–75. http://dx.doi.org/10.1016/j.jcp.2018.03.042.
Texto completo da fonteEberhard, Peter, e Timo Gaugele. "Simulation of cutting processes using mesh-free Lagrangian particle methods". Computational Mechanics 51, n.º 3 (26 de maio de 2012): 261–78. http://dx.doi.org/10.1007/s00466-012-0720-z.
Texto completo da fonteChiswell, Stephen M. "Lagrangian Time Scales and Eddy Diffusivity at 1000 m Compared to the Surface in the South Pacific and Indian Oceans". Journal of Physical Oceanography 43, n.º 12 (1 de dezembro de 2013): 2718–32. http://dx.doi.org/10.1175/jpo-d-13-044.1.
Texto completo da fonteHeus, Thijs, Gertjan van Dijk, Harm J. J. Jonker e Harry E. A. Van den Akker. "Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking". Journal of the Atmospheric Sciences 65, n.º 8 (1 de agosto de 2008): 2581–97. http://dx.doi.org/10.1175/2008jas2572.1.
Texto completo da fonteLu, Shengfang, Weijian Chen, Dalin Zhang, Zihao Zhang e Guangya Zhu. "Investigation on Phase Transition and Collection Characteristics of Non-Spherical Ice Crystals with Eulerian and Lagrangian Methods". Aerospace 11, n.º 4 (11 de abril de 2024): 299. http://dx.doi.org/10.3390/aerospace11040299.
Texto completo da fonteOSTAD, H., e S. MOHAMMADI. "A STABILIZED PARTICLE METHOD FOR LARGE DEFORMATION DYNAMIC ANALYSIS OF STRUCTURES". International Journal of Structural Stability and Dynamics 12, n.º 04 (julho de 2012): 1250026. http://dx.doi.org/10.1142/s0219455412500265.
Texto completo da fonteГлазунов, А. В. "Numerical simulation of turbulence and transport of fine particulate impurities in street canyons". Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), n.º 1(55) (13 de março de 2018): 17–37. http://dx.doi.org/10.26089/nummet.v19r103.
Texto completo da fonteRyatina, E., e A. Lagno. "The Barnes — Hut-type algorithm in 2D Lagrangian vortex particle methods". Journal of Physics: Conference Series 1715 (janeiro de 2021): 012069. http://dx.doi.org/10.1088/1742-6596/1715/1/012069.
Texto completo da fonteLei, Yan, Xiaojie Liang, Dingwu Zhou, Tao Qiu, Kaixin Wang e Yue Wu. "Effect of Particle Diameter on Primary Breakup of High-Pressure Diesel Spray Atomization: A Study Based on Numerical Simulations Using the Eulerian–Lagrangian Model". Energies 16, n.º 1 (26 de dezembro de 2022): 238. http://dx.doi.org/10.3390/en16010238.
Texto completo da fonteZheligovsky, Vladislav, e Uriel Frisch. "Time-analyticity of Lagrangian particle trajectories in ideal fluid flow". Journal of Fluid Mechanics 749 (16 de maio de 2014): 404–30. http://dx.doi.org/10.1017/jfm.2014.221.
Texto completo da fontePérez-Muñuzuri, Vicente, Jorge Eiras-Barca e Daniel Garaboa-Paz. "Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events". Earth System Dynamics 9, n.º 2 (8 de junho de 2018): 785–95. http://dx.doi.org/10.5194/esd-9-785-2018.
Texto completo da fonteBisyk, S. P., I. B. Chepkov, M. I. Vaskivskyi, L. S. Davydovskyi, O. A. Slуvinskуi e O. M. Aristarkhov. "Methods for modelling Air blast on structures in LS-DYNA. Comparison and analysys". Озброєння та військова техніка 21, n.º 1 (26 de março de 2019): 22–31. http://dx.doi.org/10.34169/2414-0651.2019.1(21).22-31.
Texto completo da fonteWu, C. T., W. Hu e M. Koishi. "A Smoothed Particle Galerkin Formulation for Extreme Material Flow Analysis in Bulk Forming Applications". International Journal of Computational Methods 13, n.º 03 (31 de maio de 2016): 1650019. http://dx.doi.org/10.1142/s0219876216500195.
Texto completo da fonteGai, Guodong, Olivier Thomine, Abdellah Hadjadj, Sergey Kudriakov e Anthony Wachs. "Preferential Concentration of Particles in Forced Turbulent Flows: Effects of Gravity". Energies 16, n.º 6 (22 de março de 2023): 2910. http://dx.doi.org/10.3390/en16062910.
Texto completo da fonteGilfanov, A. K., T. S. Zaripov, S. S. Sazhin e O. Rybdylova. "The Analysis of Particle Number Densities in Dilute Gas-Particle Flows: The Eulerian and Lagrangian Methods". Lobachevskii Journal of Mathematics 43, n.º 10 (outubro de 2022): 2938–47. http://dx.doi.org/10.1134/s1995080222130145.
Texto completo da fonteHUANG, RONGPEI, e CAISHENG LIAO. "GEOMETRICAL PARTICLE MODELS ON 3D LIGHTLIKE CURVES". Modern Physics Letters A 21, n.º 40 (28 de dezembro de 2006): 3039–48. http://dx.doi.org/10.1142/s0217732306020603.
Texto completo da fonteMarri, Mahendher, e Dr Rehan Ahmed. "Impact Mechanics of Thin Metal Plates Using Lagrangian, CEL and SPH Methods". International Journal of Engineering and Advanced Technology 13, n.º 6 (30 de agosto de 2024): 22–36. http://dx.doi.org/10.35940/ijeat.f4528.13060824.
Texto completo da fonteJohnson, Gordon R. "Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations". Nuclear Engineering and Design 150, n.º 2-3 (setembro de 1994): 265–74. http://dx.doi.org/10.1016/0029-5493(94)90143-0.
Texto completo da fonteRautenbach, Ryan, Sebastian Hofmann, Lukas Buntkiel, Jan Schäfer, Sebastian Felix Reinecke, Marko Hoffmann, Uwe Hampel e Michael Schlüter. "Dynamics of Lagrangian Sensor Particles: The Effect of Non-Homogeneous Mass Distribution". Processes 12, n.º 8 (1 de agosto de 2024): 1617. http://dx.doi.org/10.3390/pr12081617.
Texto completo da fonteSchanz, D., T. Jahn e A. Schröder. "3D Particle Position Determination And Correction At High Particle Densities". Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 20 (11 de julho de 2022): 1–17. http://dx.doi.org/10.55037/lxlaser.20th.214.
Texto completo da fonteZhou, Ke, Samuel Jacobi Grauer, Daniel Schanz, Philipp Godbersen, Andreas Schröder, Thomas Rockstroh, Young Jin Jeon e Bernhard Wieneke. "Benchmarking Data Assimilation Algorithms For 3D Lagrangian Particle Tracking". Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (8 de julho de 2024): 1–22. http://dx.doi.org/10.55037/lxlaser.21st.229.
Texto completo da fonteChe Sidik, Nor Azwadi, Leila Jahanshaloo, Azlin Ismail e Alireza Fazeli. "The Use of Lattice Boltzmann Method for Particulate Flow Analysis". Applied Mechanics and Materials 695 (novembro de 2014): 413–17. http://dx.doi.org/10.4028/www.scientific.net/amm.695.413.
Texto completo da fonteHou, Qingzhi, Jiaru Liu, Jijian Lian e Wenhuan Lu. "A Lagrangian Particle Algorithm (SPH) for an Autocatalytic Reaction Model with Multicomponent Reactants". Processes 7, n.º 7 (3 de julho de 2019): 421. http://dx.doi.org/10.3390/pr7070421.
Texto completo da fonteEden, Carsten. "Relating Lagrangian, Residual, and Isopycnal Means". Journal of Physical Oceanography 42, n.º 7 (1 de julho de 2012): 1057–64. http://dx.doi.org/10.1175/jpo-d-11-068.1.
Texto completo da fonteFahrenthold, E. P., e J. C. Koo. "Hybrid Particle-Element Bond Graphs for Impact Dynamics Simulation". Journal of Dynamic Systems, Measurement, and Control 122, n.º 2 (10 de agosto de 1995): 306–13. http://dx.doi.org/10.1115/1.482456.
Texto completo da fonteBakry, Mohamed Abdallah, Galal Mahrous Moatimid e Mohamed Mounir Tantawy. "Perihelion advance and stability criterion of a spinning charged test particle in Reissner–Nordström field: Application in earth orbit". International Journal of Modern Physics A 36, n.º 10 (10 de abril de 2021): 2150073. http://dx.doi.org/10.1142/s0217751x21500731.
Texto completo da fonteSpiller, Elaine T., Amarjit Budhiraja, Kayo Ide e Chris K. R. T. Jones. "Modified particle filter methods for assimilating Lagrangian data into a point-vortex model". Physica D: Nonlinear Phenomena 237, n.º 10-12 (julho de 2008): 1498–506. http://dx.doi.org/10.1016/j.physd.2008.03.023.
Texto completo da fonteTan, Kun. "Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method". Mechanics and Advanced Technologies 8, n.º 3(102) (30 de setembro de 2024): 280–88. http://dx.doi.org/10.20535/2521-1943.2024.8.3(102).304079.
Texto completo da fonteWu, Z., W. Birmili, L. Poulain, Z. Wang, M. Merkel, B. Fahlbusch, D. van Pinxteren, H. Herrmann e A. Wiedensohler. "Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth". Atmospheric Chemistry and Physics 13, n.º 13 (12 de julho de 2013): 6637–46. http://dx.doi.org/10.5194/acp-13-6637-2013.
Texto completo da fonteXue, Pengfei, David Schwab, Xing Zhou, Chenfu Huang, Ryan Kibler e Xinyu Ye. "A Hybrid Lagrangian–Eulerian Particle Model for Ecosystem Simulation". Journal of Marine Science and Engineering 6, n.º 4 (26 de setembro de 2018): 109. http://dx.doi.org/10.3390/jmse6040109.
Texto completo da fonteGERASHCHENKO, S., N. S. SHARP, S. NEUSCAMMAN e Z. WARHAFT. "Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer". Journal of Fluid Mechanics 617 (25 de dezembro de 2008): 255–81. http://dx.doi.org/10.1017/s0022112008004187.
Texto completo da fonteSpear, Derek G., Anthony N. Palazotto e Ryan A. Kemnitz. "Modeling and Simulation Techniques Used in High Strain Rate Projectile Impact". Mathematics 9, n.º 3 (30 de janeiro de 2021): 274. http://dx.doi.org/10.3390/math9030274.
Texto completo da fonteDing, Yuanyuan. "An improvement of the Lagrangian analysis method based on particle velocity profiles". EPJ Web of Conferences 183 (2018): 01023. http://dx.doi.org/10.1051/epjconf/201818301023.
Texto completo da fonteZhou, Kun, e Zhu He. "Monte Carlo simulation of aerosol evolution in a planar mixing layer". International Journal of Numerical Methods for Heat & Fluid Flow 24, n.º 8 (28 de outubro de 2014): 1769–81. http://dx.doi.org/10.1108/hff-04-2013-0123.
Texto completo da fonte