Literatura científica selecionada sobre o tema "Label free identification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Label free identification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Label free identification"
Li, Jing, Hua Xu, Graham M. West e Lyn H. Jones. "Label-free technologies for target identification and validation". MedChemComm 7, n.º 5 (2016): 769–77. http://dx.doi.org/10.1039/c6md00045b.
Texto completo da fonteNickelsen, Anna, e Joachim Jose. "Label-free flow cytometry-based enzyme inhibitor identification". Analytica Chimica Acta 1179 (setembro de 2021): 338826. http://dx.doi.org/10.1016/j.aca.2021.338826.
Texto completo da fonteLloyd, William R., Shailesh Agarwal, Sagar U. Nigwekar, Karen Esmonde-White, Shawn Loder, Shawn Fagan, Jeremy Goverman et al. "Raman spectroscopy for label-free identification of calciphylaxis". Journal of Biomedical Optics 20, n.º 8 (11 de agosto de 2015): 080501. http://dx.doi.org/10.1117/1.jbo.20.8.080501.
Texto completo da fonteLi, Huafeng, Qingsong Hu e Zhanxuan Hu. "Catalyst for Clustering-Based Unsupervised Object Re-identification: Feature Calibration". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 4 (24 de março de 2024): 3091–99. http://dx.doi.org/10.1609/aaai.v38i4.28092.
Texto completo da fonteChoi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper e Sunggook Park. "Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis". Small 17, n.º 42 (23 de setembro de 2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.
Texto completo da fonteChoi, Junseo, Zheng Jia, Ramin Riahipour, Collin J. McKinney, Charuni A. Amarasekara, Kumuditha M. Weerakoon‐Ratnayake, Steven A. Soper e Sunggook Park. "Label‐Free Identification of Single Mononucleotides by Nanoscale Electrophoresis". Small 17, n.º 42 (23 de setembro de 2021): 2102567. http://dx.doi.org/10.1002/smll.202102567.
Texto completo da fonteDannhauser, David, Paolo Antonio Netti e Filippo Causa. "Label-free scattering snapshot classification for living cell identification". EPJ Web of Conferences 309 (2024): 10021. http://dx.doi.org/10.1051/epjconf/202430910021.
Texto completo da fontePaidi, Santosh Kumar, Soumik Siddhanta, Robert Strouse, James B. McGivney, Christopher Larkin e Ishan Barman. "Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy". Analytical Chemistry 88, n.º 8 (8 de abril de 2016): 4361–68. http://dx.doi.org/10.1021/acs.analchem.5b04794.
Texto completo da fonteFaria, Henrique Antonio Mendonça, e Valtencir Zucolotto. "Label-free electrochemical DNA biosensor for zika virus identification". Biosensors and Bioelectronics 131 (abril de 2019): 149–55. http://dx.doi.org/10.1016/j.bios.2019.02.018.
Texto completo da fonteBae, Euiwon, Nan Bai, Amornrat Aroonnual, Arun K. Bhunia e E. Daniel Hirleman. "Label-free identification of bacterial microcolonies via elastic scattering". Biotechnology and Bioengineering 108, n.º 3 (10 de novembro de 2010): 637–44. http://dx.doi.org/10.1002/bit.22980.
Texto completo da fonteTeses / dissertações sobre o assunto "Label free identification"
Wang, Yunmiao. "Microgap Structured Optical Sensor for Fast Label-free DNA Detection". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32875.
Texto completo da fonteMaster of Science
Mohammed, Kader Hamno. "Development of a label-free biosensor method for the identification of sticky compounds which disturb GPCR-assays". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220645.
Texto completo da fonteHughes, Juanita Maree. "A novel identification method for ultra trace detection of biomolecules using functionalised Surface Enhanced Raman Spectroscopy (SERS)". Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/72864/2/Juanita_Hughes_Thesis.pdf.
Texto completo da fonteJemfer, Charlotte. "Couplage SdFFF et UHF-DEP : Technologie innovante d'isolement et de caractérisation des CSC appliquée au diagnostic et à la thérapie du cancer colorectal". Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0112.
Texto completo da fonteCancer stem cells (CSCs) play a central role in cellular heterogeneity and tumour progression in colorectal cancer (CRC). However, their isolation is a challenge using conventional methods based on fluorescent or magnetic labelling. These methods remain uncertain due to the plasticity of CSCs, thus limiting their clinical usefulness. In this study, we propose an innovative coupling between cell sorting fractionation by sedimentation flow-force coupling (SdFFF) and the ultra-high frequency biosensor detection method (UHF-DEP), both label-free methods. This approach has already demonstrated its effectiveness in glioblastoma, and our aim is to demonstrate its universality and its application to other types of cancer such as CRC. This coupling requires instrumental and methodological adaptation to the mobile phase of the two technologies. Functional and phenotypic analysis and, for the first time, transcriptomic analysis revealed that SdFFF was capable of isolating a CSC-enriched subpopulation. These characteristics are correlated with specific electromagnetic signatures (SEM) obtained by the UHF-DEP biosensor, thus demonstrating the effectiveness of the SdFFF/UHF-DEP coupling for the isolation and characterisation of CSCs in the CRC. These signatures correlate not only with the strain status of the populations, but also with changes in membrane properties, as revealed by transcriptomic analysis.To further explore the interest of this coupling, we explored its potential to analyse the effects of 5-fluorouracil (5-FU, a key chemotherapy in the treatment of CRC) on isolated sub-populations. We compared the SEM and transcriptomic analysis of these CSC sub-populations, with the aim of identifying the changes induced, opening up potential applications in diagnosis and therapeutic monitoring. Finally, SEM and RNA-Seq analysis of a heterogeneous cell population treated with 5-FU, sorted and then characterised, made it possible to assess the coupling's ability to identify residual cancer stem cells (CSCs) after treatment. The results suggest a reduction in the CSC population after treatment, underlining the potential of this approach for assessing therapeutic efficacy and the changes induced by chemotherapy on CSCs. This work demonstrates the potential of SdFFF/UHF-DEP coupling as a diagnostic and treatment personalisation tool in oncology, offering promising prospects for more accurate assessment of therapeutic response and optimisation of treatment strategies according to cell profile
Chan, Janet Nga Yung. "A label- and immobilization-free proteomic approach for identification of targets of drugs". 2009. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=958044&T=F.
Texto completo da fonteWen-ChangTzeng e 曾文璋. "Identification of metastasis related phosphotyrosine proteins in response to tyrosine kinase inhibitor treatment in human lung cancer cells using label-free quantitative analysis". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/53742724473299540703.
Texto completo da fonteSeibert, C., B. R. Davidson, B. J. Fuller, Laurence H. Patterson, W. J. Griffiths e Y. Wang. "Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry". 2009. http://hdl.handle.net/10454/6179.
Texto completo da fonteCapítulos de livros sobre o assunto "Label free identification"
Hendriks, Ivo A., e Alfred C. O. Vertegaal. "Label-Free Identification and Quantification of SUMO Target Proteins". In Methods in Molecular Biology, 171–93. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6358-4_13.
Texto completo da fonteHiggs, Richard E., Michael D. Knierman, Valentina Gelfanova, Jon P. Butler e John E. Hale. "Label-Free LC-MS Method for the Identification of Biomarkers". In Methods in Molecular Biology™, 209–30. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-117-8_12.
Texto completo da fonteLiang, Xinmiao, Jixia Wang, Xiuli Zhang e Ye Fang. "Label-Free Cell Phenotypic Identification of Active Compounds in Traditional Chinese Medicines". In Methods in Pharmacology and Toxicology, 233–52. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2617-6_13.
Texto completo da fonteHu, Heidi, Huayun Deng e Ye Fang. "Label-Free Cell Phenotypic Identification of d-Luciferin as an Agonist for GPR35". In Bioluminescence, 3–17. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3813-1_1.
Texto completo da fonteLi, Shalan, Haitao Zan, Zhe Zhu, Dandan Lu e Leonard Krall. "Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discovery Software". In Plant Phosphoproteomics, 179–87. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1625-3_13.
Texto completo da fonteSharma, Kanika, Prashant Kaushal e Vikas Kumar. "Proteomic Identification and Label-Free Quantification of Proteins Implicated in Neurite and Spine Formation". In Methods in Molecular Biology, 133–43. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3969-6_10.
Texto completo da fonteHoltz, Anja, Nathan Basisty e Birgit Schilling. "Quantification and Identification of Post-Translational Modifications Using Modern Proteomics". In Methods in Molecular Biology, 225–35. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1024-4_16.
Texto completo da fonteLi, Shalan, Haitao Zan, Zhe Zhu, Dandan Lu e Leonard Krall. "Correction to: Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software". In Plant Phosphoproteomics, C1. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1625-3_18.
Texto completo da fonteVis, Bradley, Jonathan J. Powell e Rachel E. Hewitt. "Label-Free Identification of Persistent Particles in Association with Primary Immune Cells by Imaging Flow Cytometry". In Methods in Molecular Biology, 135–48. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3020-4_8.
Texto completo da fonteNée, Guillaume, Priyadarshini Tilak e Iris Finkemeier. "A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification". In Methods in Molecular Biology, 257–71. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0528-8_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Label free identification"
Pirone, Daniele, Beatrice Cavina, Martina Mugnano, Vittorio Bianco, Lisa Miccio, Anna Myriam Perrone, Anna Maria Porcelli et al. "Label-free identification of T-lymphocytes in holographic microscopy empowered by machine learning". In Digital Holography and Three-Dimensional Imaging, W4A.15. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.15.
Texto completo da fonteYang, Bin, Jianyu Ren e Wei Xiong. "Label-free identification of tumor tissues by coherent nonlinear vibrational mode imaging". In Ultrafast Nonlinear Imaging and Spectroscopy XII, editado por Zhiwen Liu, Demetri Psaltis e Kebin Shi, 16. SPIE, 2024. http://dx.doi.org/10.1117/12.3027676.
Texto completo da fonteEltigani, Faihaa Mohammed, Nebras Ahmed Mohamed e Xuantao Su. "Light scattering imaging combined with machine learning for label-free identification of live yeast cells". In Third Conference on Biomedical Photonics and Cross-Fusion (BPC 2024), editado por Zhenxi Zhang, Junle Qu e Buhong Li, 19. SPIE, 2024. http://dx.doi.org/10.1117/12.3039875.
Texto completo da fonteHahm, Tae-Hun, Kristine Glunde e Alison Scott. "FluoMALDI imaging of the immune response for label-free in situ identification of phagocytes in Francisella novicida-infected mouse tissues". In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXIII, editado por Attila Tarnok, Jessica P. Houston e Xuantao Su, 19. SPIE, 2025. https://doi.org/10.1117/12.3041947.
Texto completo da fonteBélanger, Erik, Gabrielle Jess, Jean-Honoré Laurent, Corentin Soubeiran, Céline Larivière-Loiselle, Sara Mattar, Niraj Patel et al. "Progress and advances in the development of a label-free optofluidic platform based on quantitative phase digital holographic microscopy and microfluidics for the identification of human disease-specific cell phenotypes (Conference Presentation)". In Microfluidics, BioMEMS, and Medical Microsystems XXIII, editado por Bastian E. Rapp e Colin Dalton, 11. SPIE, 2025. https://doi.org/10.1117/12.3042226.
Texto completo da fonteGesley, Mark A., Robert Goldsby, Stephen M. Lane e Romin Puri. "Spectral image microscopy for label-free blood and cancer cell identification". In Label-free Biomedical Imaging and Sensing (LBIS) 2019, editado por Natan T. Shaked e Oliver Hayden. SPIE, 2019. http://dx.doi.org/10.1117/12.2507474.
Texto completo da fontePourrahimi, Monireh, Samaneh Ghazanfarpour, Alireza Sheikhsofla, Rafael Pena, Jennifer Morrissey, Sujith Chander Reddy Kollampally, Anna Sharikova, Yubing Xie, Melinda Larsen e Alexander Khmaladze. "Detection and identification of alginate in tissue-freezing media samples using Raman spectroscopy". In Label-free Biomedical Imaging and Sensing (LBIS) 2024, editado por Natan T. Shaked e Oliver Hayden. SPIE, 2024. http://dx.doi.org/10.1117/12.3003876.
Texto completo da fonteLe Galudec, Joel, Mathieu Dupoy e Pierre Marcoux. "Multispectral lensless imaging in the mid-infrared for label-free identification of Staphylococcus species". In Label-free Biomedical Imaging and Sensing (LBIS) 2021, editado por Natan T. Shaked e Oliver Hayden. SPIE, 2021. http://dx.doi.org/10.1117/12.2578264.
Texto completo da fonteBruno, Giulia, Koseki J. Kobayashi-Kirschvink, Michal Lipinski, Christian Tentellino, Peter T. C. So, Paola Arlotta, Jeon Woong Kang e Francesco De Angelis. "Label-free identification of biochemical variations in brain organoid maturation stages through Raman spectroscopy". In Label-free Biomedical Imaging and Sensing (LBIS) 2024, editado por Natan T. Shaked e Oliver Hayden. SPIE, 2024. http://dx.doi.org/10.1117/12.3001590.
Texto completo da fonteMarzi, Anne, Ilona Nordhorn, Kai Eder, Martin Wiemann, Uwe Karst, Björn Kemper e Jürgen Schnekenburger. "Label-free identification and quantification of nanoparticles in single cells by combining digital holographic microscopy and mass spectrometry". In Label-free Biomedical Imaging and Sensing (LBIS) 2022, editado por Natan T. Shaked e Oliver Hayden. SPIE, 2022. http://dx.doi.org/10.1117/12.2609700.
Texto completo da fonte