Artigos de revistas sobre o tema "KTaO₃"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "KTaO₃".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wu, Ning, Xue-Jing Zhang e Bang-Gui Liu. "Strain-enhanced giant Rashba spin splitting in ultrathin KTaO3 films for spin-polarized photocurrents". RSC Advances 10, n.º 72 (2020): 44088–95. http://dx.doi.org/10.1039/d0ra08745a.
Texto completo da fonteBajorowicz, B., J. Reszczyńska, W. Lisowski, T. Klimczuk, M. Winiarski, M. Słoma e A. Zaleska-Medynska. "Perovskite-type KTaO3–reduced graphene oxide hybrid with improved visible light photocatalytic activity". RSC Advances 5, n.º 111 (2015): 91315–25. http://dx.doi.org/10.1039/c5ra18124k.
Texto completo da fonteTong, Lei, Jie Sun, Shuting Wang, Youmin Guo, Qiuju Li, Hong Wang e Chunchang Wang. "Normal and abnormal dielectric relaxation behavior in KTaO3 ceramics". RSC Advances 7, n.º 80 (2017): 50680–87. http://dx.doi.org/10.1039/c7ra09866a.
Texto completo da fonteWang, Yaqin, Jianli Cheng, Maziar Behtash, Wu Tang, Jian Luo e Kesong Yang. "First-principles studies of polar perovskite KTaO3 surfaces: structural reconstruction, charge compensation, and stability diagram". Physical Chemistry Chemical Physics 20, n.º 27 (2018): 18515–27. http://dx.doi.org/10.1039/c8cp02540a.
Texto completo da fonteHagiwara, Hidehisa, Ittoku Nozawa, Katsuaki Hayakawa e Tatsumi Ishihara. "Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates". Sustainable Energy & Fuels 3, n.º 11 (2019): 3021–28. http://dx.doi.org/10.1039/c9se00355j.
Texto completo da fonteXu, Shaowen, Fanhao Jia, Shunbo Hu, Athinarayanan Sundaresan, Nikita V. Ter-Oganessian, Alexander P. Pyatakov, Jinrong Cheng, Jincang Zhang, Shixun Cao e Wei Ren§. "Predicting the structural, electronic and magnetic properties of few atomic-layer polar perovskite". Physical Chemistry Chemical Physics 23, n.º 9 (2021): 5578–82. http://dx.doi.org/10.1039/d0cp06671k.
Texto completo da fonteLaguta, V. V., M. D. Glinchuk, I. P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik e J. Rosa. "Shallow traps in pure KTaO 3 crystals". Radiation Effects and Defects in Solids 157, n.º 6-12 (janeiro de 2002): 721–27. http://dx.doi.org/10.1080/10420150215786.
Texto completo da fontePotůček, Z., Z. Bryknar e J. Schulz. "Thermoluminescence of nominally pure KTaO 3 crystals". Radiation Effects and Defects in Solids 157, n.º 6-12 (janeiro de 2002): 1021–24. http://dx.doi.org/10.1080/10420150215827.
Texto completo da fonteChen, Jikun, Xinyou Ke, Jiaou Wang, Takeaki Yajima, Haijie Qian e Song Sun. "Dipole-correlated carrier transportation and orbital reconfiguration in strain-distorted SrNbxTi1−xO3/KTaO3". Physical Chemistry Chemical Physics 19, n.º 44 (2017): 29913–17. http://dx.doi.org/10.1039/c7cp06495k.
Texto completo da fonteGupta, Anshu, Ajit Singh, Chandan Bera e Suvankar Chakraverty. "Light-matter interaction of the polar-polar interface LaVO3-KTaO3 (111)". Journal of Physics: Conference Series 2518, n.º 1 (1 de junho de 2023): 012009. http://dx.doi.org/10.1088/1742-6596/2518/1/012009.
Texto completo da fonteFilipič, C., V. Bobnar, Z. Kutnjak, S. Glinšek, B. Kužnik, B. Malič, M. Kosec e A. Levstik. "Strain-induced ferroelectricity in KTaO 3 thin films". EPL (Europhysics Letters) 96, n.º 3 (4 de outubro de 2011): 37003. http://dx.doi.org/10.1209/0295-5075/96/37003.
Texto completo da fonteMaiwald, M., e O. F. Schirmer. "O − dynamic Jahn-Teller polarons in KTaO 3". Europhysics Letters (EPL) 64, n.º 6 (dezembro de 2003): 776–82. http://dx.doi.org/10.1209/epl/i2003-00625-3.
Texto completo da fonteSchwaigert, Tobias, Salva Salmani-Rezaie, Matthew R. Barone, Hanjong Paik, Ethan Ray, Michael D. Williams, David A. Muller, Darrell G. Schlom e Kaveh Ahadi. "Molecular beam epitaxy of KTaO3". Journal of Vacuum Science & Technology A 41, n.º 2 (março de 2023): 022703. http://dx.doi.org/10.1116/6.0002223.
Texto completo da fonteTrybuła, Zbigniew, Szymon Łoś, Katarzyna Kaszyńska, Maya D. Glinchuk e Igor P. Bykov. "Low Temperature Dielectric Behavior in Iron Doped KTaO 3". Ferroelectrics 268, n.º 1 (janeiro de 2002): 423–28. http://dx.doi.org/10.1080/713715969.
Texto completo da fonteTomar, Ruchi, Neha Wadehra, Shelender Kumar, Ananth Venkatesan, D. D. Sarma, Denis Maryenko e S. Chakraverty. "Defects, conductivity and photoconductivity in Ar+ bombarded KTaO 3". Journal of Applied Physics 126, n.º 3 (21 de julho de 2019): 035303. http://dx.doi.org/10.1063/1.5099546.
Texto completo da fonteDoussineau, P., S. Ziolkiewicz e U. T. Höchli. "Ultrasonic Investigations of Tunnel States in KTaO 3 :Na". Europhysics Letters (EPL) 9, n.º 6 (15 de julho de 1989): 591–96. http://dx.doi.org/10.1209/0295-5075/9/6/017.
Texto completo da fonteProsandeev, S. A., V. S. Vikhnin e S. Kapphan. "Percolation with constraints in the highly polarizable oxide KTaO". European Physical Journal B 15, n.º 3 (2000): 469. http://dx.doi.org/10.1007/s100510051148.
Texto completo da fonteKleemann, W., S. Kütz e D. Rytz. "Cluster Glass and Domain State Properties of KTaO 3 Li". Europhysics Letters (EPL) 4, n.º 2 (15 de julho de 1987): 239–45. http://dx.doi.org/10.1209/0295-5075/4/2/017.
Texto completo da fonteReyher, H. J., B. Faust, M. Maiwald e H. Hesse. "ODMR and EPR investigations of Fe centers in KTaO $_3$". Applied Physics B: Lasers and Optics 63, n.º 4 (27 de setembro de 1996): 331–37. http://dx.doi.org/10.1007/s003400050092.
Texto completo da fonteFarhi, E., A. K. Tagantsev, R. Currat, B. Hehlen, E. Courtens e L. A. Boatner. "Low energy phonon spectrum and its parameterization in pure KTaO". European Physical Journal B 15, n.º 4 (2000): 615. http://dx.doi.org/10.1007/s100510051164.
Texto completo da fonteProsandeev, S. A., V. S. Vikhnin e S. Kapphan. "Percolation with constraints in the highly polarizable oxide KTaO :Li". European Physical Journal B 15, n.º 3 (maio de 2000): 469–74. http://dx.doi.org/10.1007/pl00011047.
Texto completo da fonteLiu, Changjiang, Xi Yan, Dafei Jin, Yang Ma, Haw-Wen Hsiao, Yulin Lin, Terence M. Bretz-Sullivan et al. "Two-dimensional superconductivity and anisotropic transport at KTaO 3 (111) interfaces". Science 371, n.º 6530 (12 de fevereiro de 2021): 716–21. http://dx.doi.org/10.1126/science.aba5511.
Texto completo da fonteGupta, Anshu, Harsha Silotia, Anamika Kumari, Manish Dumen, Saveena Goyal, Ruchi Tomar, Neha Wadehra, Pushan Ayyub e Suvankar Chakraverty. "KTaO 3 —The New Kid on the Spintronics Block". Advanced Materials 34, n.º 9 (18 de janeiro de 2022): 2106481. http://dx.doi.org/10.1002/adma.202106481.
Texto completo da fonteSuwanwong, Sanit, Artit Hutem, Supoj Kerdmee e Piyarut Moonsri. "UV Irradiation Effect on the Surface KTaO3 Crystals". Applied Mechanics and Materials 855 (outubro de 2016): 121–25. http://dx.doi.org/10.4028/www.scientific.net/amm.855.121.
Texto completo da fonteОбозова, Е. Д., П. П. Сырников e В. Г. Залесский. "Неоднородная деформация монокристалла KTaO-=SUB=-3-=/SUB=- вследствие обратного флексоэлектрического эффекта". Физика твердого тела 60, n.º 5 (2018): 947. http://dx.doi.org/10.21883/ftt.2018.05.45791.312.
Texto completo da fonteJie, Xing, Guo Er-Jia, Jin Kui-Juan, Lu Hui-Bin, He Meng, Wen Juan e Yang Fang. "Ultraviolet Sensitive Ultrafast Photovoltaic Effect in Tilted KTaO 3 Single Crystals". Chinese Physics Letters 27, n.º 2 (fevereiro de 2010): 027202. http://dx.doi.org/10.1088/0256-307x/27/2/027202.
Texto completo da fonteBhattacharya, Sanchari, Soumyasree Jena e Sanjoy Datta. "Emergent Phenomena in KTaO3/SrTiO3 Heterostructure". Journal of Physics: Conference Series 2518, n.º 1 (1 de junho de 2023): 012019. http://dx.doi.org/10.1088/1742-6596/2518/1/012019.
Texto completo da fonteTsukada, Shinya, e Yukikuni Akishige. "Thickness Dependence of Extrinsic Dielectric Response in Reduced Ni-Doped KTaO$_{3}$". Japanese Journal of Applied Physics 51 (20 de setembro de 2012): 09LC01. http://dx.doi.org/10.1143/jjap.51.09lc01.
Texto completo da fonteZhen-Ye, Zhu, Wang Si-Qi e Fu Yan-Ming. "First-Principles Study of Properties of Strained PbTiO 3 /KTaO 3 Superlattice". Chinese Physics Letters 33, n.º 2 (fevereiro de 2016): 026302. http://dx.doi.org/10.1088/0256-307x/33/2/026302.
Texto completo da fonteGoh, Gregory K. L., Kelvin Y. S. Chan, Barnabas S. K. Tan, Y. W. Zhang, J. H. Kim e Thomas Osipowicz. "Low-Temperature Epitaxy of KTaO[sub 3] and KNbO[sub 3] Films". Journal of The Electrochemical Society 155, n.º 1 (2008): D52. http://dx.doi.org/10.1149/1.2801862.
Texto completo da fonteWu, Bin, Jinzhen Cai e Xin Zhou. "Structural, electronic, optical and photocatalytic properties of KTaO3 with NiO cocatalyst modification". RSC Advances 12, n.º 50 (2022): 32270–79. http://dx.doi.org/10.1039/d2ra06425a.
Texto completo da fonteWang, Fu-Ning, Ji-Chao Li, Yi Li, Xin-Miao Zhang, Xue-Jin Wang, Yu-Fei Chen, Jian Liu, Chun-Lei Wang, Ming-Lei Zhao e Liang-Mo Mei. "Prediction of high-mobility two-dimensional electron gas at KTaO 3 -based heterointerfaces". Chinese Physics B 28, n.º 4 (abril de 2019): 047101. http://dx.doi.org/10.1088/1674-1056/28/4/047101.
Texto completo da fontePaulauskas, I. E., J. E. Katz, G. E. Jellison, N. S. Lewis, L. A. Boatner e G. M. Brown. "Growth, Characterization, and Electrochemical Properties of Doped n-Type KTaO[sub 3] Photoanodes". Journal of The Electrochemical Society 156, n.º 5 (2009): B580. http://dx.doi.org/10.1149/1.3089281.
Texto completo da fonteMaglione, M., S. Rod e U. T. Höchli. "Order and Disorder in SrTiO 3 and in Pure and Doped KTaO 3". Europhysics Letters (EPL) 4, n.º 5 (1 de setembro de 1987): 631–36. http://dx.doi.org/10.1209/0295-5075/4/5/019.
Texto completo da fonteNorton, D. P., N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton e R. G. Wilson. "Properties of Mn-Implanted BaTiO[sub 3], SrTiO[sub 3], and KTaO[sub 3]". Electrochemical and Solid-State Letters 6, n.º 2 (2003): G19. http://dx.doi.org/10.1149/1.1531871.
Texto completo da fonteBruno, Flavio Y., Siobhan McKeown Walker, Sara Riccò, Alberto la Torre, Zhiming Wang, Anna Tamai, Timur K. Kim, Moritz Hoesch, Mohammad S. Bahramy e Felix Baumberger. "Band Structure and Spin–Orbital Texture of the (111)‐KTaO 3 2D Electron Gas". Advanced Electronic Materials 5, n.º 5 (13 de março de 2019): 1800860. http://dx.doi.org/10.1002/aelm.201800860.
Texto completo da fonteJacobs, Dakota C., Rebecca E. Veitch e Patrick E. Chappell. "Evaluation of Immortalized AVPV- and Arcuate-Specific Neuronal Kisspeptin Cell Lines to Elucidate Potential Mechanisms of Estrogen Responsiveness and Temporal Gene Expression in Females". Endocrinology 157, n.º 9 (7 de julho de 2016): 3410–19. http://dx.doi.org/10.1210/en.2016-1294.
Texto completo da fonteГусева, Ольга Сергеевна, Ольга Витальевна Малышкина e Артем Сергеевич Митченко. "EFFECT OF MODIFIERS ON THE BARIUM NIOBATE-CALCIUM CERAMICS STRUCTURE". Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, n.º 14 (15 de dezembro de 2022): 572–82. http://dx.doi.org/10.26456/pcascnn/2022.14.572.
Texto completo da fonteLee, J. S., Z. G. Khim, Y. D. Park, D. P. Norton, J. D. Budai, L. A. Boatner, S. J. Pearton e R. G. Wilson. "Effects of Co Implantation in BaTiO[sub 3], SrTiO[sub 3], and KTaO[sub 3]". Electrochemical and Solid-State Letters 6, n.º 4 (2003): J1. http://dx.doi.org/10.1149/1.1558353.
Texto completo da fonteChappell, Patrick, Jessica Ewton, Teagan James, Varsha Karthikeyan e Alia Starman. "PMON54 Exosomes Isolated from Conditioned Media of Immortalized Kisspeptin Neurons Exert Diverse Effects on Central and Peripheral in Vitro Cell Models." Journal of the Endocrine Society 6, Supplement_1 (1 de novembro de 2022): A555—A556. http://dx.doi.org/10.1210/jendso/bvac150.1154.
Texto completo da fonteDAS, NABYENDU. "EFFECTS OF STRAIN COUPLING AND MARGINAL DIMENSIONALITY IN THE NATURE OF PHASE TRANSITION IN QUANTUM PARAELECTRICS". International Journal of Modern Physics B 27, n.º 08 (15 de março de 2013): 1350028. http://dx.doi.org/10.1142/s0217979213500288.
Texto completo da fonteVikhnin, V. S., A. G. Badalyan e P. G. Baranov. "Model of Copper Centres in KTaO 3 : Charge Transfer, Charge Compensation, and Propagation of Superhyperfine Field". Ferroelectrics 283, n.º 1 (janeiro de 2003): 149–65. http://dx.doi.org/10.1080/00150190390204222.
Texto completo da fonteIvanov, S. A., V. V. Zhurov, G. Hermeler e Wulf Depmeier. "Structural Phase Transitions in KTaO3:Li Crystals: Evidence from X-Ray Powder Diffraction Data". Materials Science Forum 228-231 (julho de 1996): 633–38. http://dx.doi.org/10.4028/www.scientific.net/msf.228-231.633.
Texto completo da fonteArakcheeva, Alla, Gervais Chapuis, Vladimir Grinevitch e Vladimir Shamray. "A novel perovskite-like Ta-bronze KTa1+z O3: preparation, stoichiometry, conductivity and crystal structure studies". Acta Crystallographica Section B Structural Science 57, n.º 2 (1 de abril de 2001): 157–62. http://dx.doi.org/10.1107/s0108768100018917.
Texto completo da fonteBicknell, Ann, Jan Francis‐Smythe e Jane Arthur. "Knowledge transfer: de‐constructing the entrepreneurial academic". International Journal of Entrepreneurial Behavior & Research 16, n.º 6 (28 de setembro de 2010): 485–501. http://dx.doi.org/10.1108/13552551011082461.
Texto completo da fonteChang, Sheng Ding, Mu Wei Ji, Chang Xu Yan, Bo Li e Jin Wang. "Photoelectric Response Difference between KTaO3/ Au and K2Ta2O6/Au Nanocrystals Resulting from Potassium Tantalate Structure". Key Engineering Materials 814 (julho de 2019): 83–89. http://dx.doi.org/10.4028/www.scientific.net/kem.814.83.
Texto completo da fonteТрепаков, В. А., А. П. Скворцов, Z. Potuvcek, L. Jastrabik e A. Dejneka. "Температурный сдвиг бесфононных f-f-линий люминесценции Er-=SUP=-3+-=/SUP=- в квантовом параэлектрике KTaO-=SUB=-3-=/SUB=-". Физика твердого тела 62, n.º 5 (2020): 800. http://dx.doi.org/10.21883/ftt.2020.05.49252.663.
Texto completo da fonteGoyal, Saveena, Neha Wadehra e Suvankar Chakraverty. "Tuning the Electrical State of 2DEG at LaVO 3 −KTaO 3 Interface: Effect of Light and Electrostatic Gate". Advanced Materials Interfaces 7, n.º 16 (17 de junho de 2020): 2000646. http://dx.doi.org/10.1002/admi.202000646.
Texto completo da fonteTrepakov, V. A., A. P. Skvortsov, Z. Potucek, Z. Bryknar, D. Nuzhnyy, V. Laguta, V. G. Kuznetsov, A. A. Gavrikov e A. Dejneka. "Optical spectroscopy and unusual temperature shift of f – f zero-phonon luminescence lines: KTaO3:Er". Ferroelectrics 591, n.º 1 (26 de abril de 2022): 191–200. http://dx.doi.org/10.1080/00150193.2022.2041938.
Texto completo da fonteBasun, S. A., V. E. Bursian, H. Hesse, S. Kapphan, L. S. Sochava e V. S. Vikhnin. "Polarization Sensitive Photo Recharging and Optical Alignment of the Tetragonal Fe3+ Centers in KTaO3". Materials Science Forum 239-241 (janeiro de 1997): 345–48. http://dx.doi.org/10.4028/www.scientific.net/msf.239-241.345.
Texto completo da fonte