Literatura científica selecionada sobre o tema "Kpnb1"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Kpnb1".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Kpnb1"
Mihalas, Bettina P., Patrick S. Western, Kate L. Loveland, Eileen A. McLaughlin e Janet E. Holt. "Changing expression and subcellular distribution of karyopherins during murine oogenesis". REPRODUCTION 150, n.º 6 (dezembro de 2015): 485–96. http://dx.doi.org/10.1530/rep-14-0585.
Texto completo da fonteSato, Kota, Hironori Yoshino, Yoshiaki Sato, Manabu Nakano e Eichi Tsuruga. "ΔNp63 Regulates Radioresistance in Human Head and Neck Squamous Carcinoma Cells". Current Issues in Molecular Biology 45, n.º 8 (27 de julho de 2023): 6262–71. http://dx.doi.org/10.3390/cimb45080394.
Texto completo da fonteHazawa, Masaharu, Hironori Yoshino, Yuta Nakagawa, Reina Shimizume, Keisuke Nitta, Yoshiaki Sato, Mariko Sato, Richard W. Wong e Ikuo Kashiwakura. "Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines". Cancers 12, n.º 4 (8 de abril de 2020): 908. http://dx.doi.org/10.3390/cancers12040908.
Texto completo da fonteKodama, Michiko, Takahiro Kodama, Justin Y. Newberg, Hiroyuki Katayama, Makoto Kobayashi, Samir M. Hanash, Kosuke Yoshihara et al. "In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer". Proceedings of the National Academy of Sciences 114, n.º 35 (15 de agosto de 2017): E7301—E7310. http://dx.doi.org/10.1073/pnas.1705441114.
Texto completo da fonteYoshino, Hironori, Yoshiaki Sato e Manabu Nakano. "KPNB1 Inhibitor Importazole Reduces Ionizing Radiation-Increased Cell Surface PD-L1 Expression by Modulating Expression and Nuclear Import of IRF1". Current Issues in Molecular Biology 43, n.º 1 (19 de maio de 2021): 153–62. http://dx.doi.org/10.3390/cimb43010013.
Texto completo da fontePark, Chanhee, Jiwon Oh, Won Mo Lee, Hye Ran Koh, Uy Dong Sohn, Seung Wook Ham e Kyungsoo Oh. "Inhibition of NUPR1–Karyopherin β1 Binding Increases Anticancer Drug Sensitivity". International Journal of Molecular Sciences 22, n.º 6 (10 de março de 2021): 2794. http://dx.doi.org/10.3390/ijms22062794.
Texto completo da fonteZeng, Yan, Yuna Wang, Zhiqin Wu, Kang Kang, Xiao Peng, Wenda Peng, Junle Qu, Lin Liu, J. Usha Raj e Deming Gou. "miR-9 enhances the transactivation of nuclear factor of activated T cells by targeting KPNB1 and DYRK1B". American Journal of Physiology-Cell Physiology 308, n.º 9 (1 de maio de 2015): C720—C728. http://dx.doi.org/10.1152/ajpcell.00299.2014.
Texto completo da fonteKim, Yong-Hak, Siyoung Ha, Jungwon Kim e Seung Wook Ham. "Identification of KPNB1 as a Cellular Target of Aminothiazole Derivatives with Anticancer Activity". ChemMedChem 11, n.º 13 (31 de maio de 2016): 1406–9. http://dx.doi.org/10.1002/cmdc.201600159.
Texto completo da fonteZeng, Renya, e Jixin Dong. "Abstract 5491: Targeting importin-YAP axis in pancreatic ductal adenocarcinoma". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 5491. http://dx.doi.org/10.1158/1538-7445.am2022-5491.
Texto completo da fonteZhu, Zhi-Chuan, Ji-Wei Liu, Kui Li, Jing Zheng e Zhi-Qi Xiong. "KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells". Oncogene 37, n.º 22 (9 de março de 2018): 2936–52. http://dx.doi.org/10.1038/s41388-018-0180-9.
Texto completo da fonteTeses / dissertações sobre o assunto "Kpnb1"
Stelma, Tamara. "The effect of inhibiting KPNB1-mediated nuclear import on cancer cell biology and inflammatory transcription factor signalling". Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/27888.
Texto completo da fonteQueron, Brenda. "Étude du mode d'action du DV188 dans l'inhibition des propriétés souches et tumorigéniques des cellules souches cancéreuses de gliome". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6050.
Texto completo da fonteGlioblastomas are the most aggressive brain tumors, characterized by intratumoral heterogeneity, poor life expectancy, and significant resistance to radio-chemotherapy treatments. The complexity of these tumors is further exacerbated by the presence of glioma stem cells (GSC), which play a crucial role in clonal proliferation, invasiveness, and tumor recurrence. GSC express various stem cell and pluripotency markers, such as NANOG and SOX2. These transcription factors must be translocated into the nucleus to activate gene programs that maintain stemness and tumorigenic properties of GSCs. The conventional treatment involves surgical intervention, when possible, followed by radio- chemotherapy. Unfortunately, this conventional treatment is limited, and tumors relapse due to the selection and the persistence of resistant GSC upon treatment cessation. To overcome this issue resulting from cytotoxic pressure, we aimed to develop a novel therapeutic strategy based on the differentiation of GSC into a less aggressive phenotype that is more sensitive to conventional treatments. In this context, we identified a chemical compound, DV188, synthesized from a molecule library by the Institute of Chemistry in Nice. Our results indicate that this compound effectively induces differentiation of patient-derived GSC, inhibits their clonal proliferation capacity, and sensitizes them to the standard chemotherapeutic agent, temozolomide (TMZ). Importantly, DV188 prevents in vivo tumor initiation and progression without affecting mouse survival following months of treatment. Additionally, the combination of DV188 and TMZ treatment demonstrated twice the efficacy compared to TMZ alone. At the molecular level, we identified an effect of DV188 on the nuclear transport of essential factors required for maintaining stem cell properties, thereby disrupting mechanisms that drive GSC aggressiveness and tumorigenicity. Our data strongly support the idea that targeting GSC differentiation, through the inhibition of nuclear transport of transcription factors involved in maintaining stemness properties, represents a promising therapeutic avenue against glioblastoma. In line with this advancement and considering the demonstrated efficacy of DV188 in murine models, the exploration of its combination with the standard chemotherapeutic agent emerges as a potential new synergistic strategy for treating this devastating disease
Van, der Watt Pauline Janet. "Expression and regulation of the nuclear transport proteins, Crm1 and Kpnß1, in cervical cancer and transformed cells". Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/3152.
Texto completo da fontePradezynski, Fabrine. "Modulation du système interféron de type I par les virus : en particulier par le virus de l'hépatite C et le virus influenza". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10252.
Texto completo da fonteTo replicate and propagate efficiently, viruses have developed multiple strategies allowing them to escape the innatedefense system: the type I IFN system, This work of thesis then consisted in studying the interactions between viralproteins and proteins of this defence system in order to understand better the mechanisms of viral subversion andidentifY possible therapeutic cellular tatgets. The reconstruction of a network of interacting proteins involved in the typeI IFN system allowed us to identifY differentiai subversion strategies for 4 viral families and to show a massive andsignificant targeting of proteins of the type I IFN system by viruses. Proteins directly interacting with the type Iinterferon system network are also strongly targeted by viruses and are potential modulators of the type I IFN system.Among these modulators, the most tatgeted function conesponds to the transport of NLS-bearing substrates to thenucleus and the KPNAI protein involved in this process held our attention. The functional study of the interactionbetween KPNA1 and NS3 protein of the HCV showed that NS3 protein associated with its cofactor NS4A inhibitsprutially the type I IFN response by preventing the nuclear translocation of ST A Tl. This phenotype could result fromthe degradation of KPNAI by NS3/4A. Besides, the identification of new cellular prutners ofNS 1 prote in of influenzavirus by yeast two-hybrid screens revealed ADARI, an interferon-stimulated prote in, as partner of NS 1 of ali testedvirus strains and we showed that ADARI is an essential host factor for viral replication and its editing function isactivated by NS 1 protein
Trabalhos de conferências sobre o assunto "Kpnb1"
Park, Chan Hee, Seung Wook Ham, HyeKyoung Shin e Kyung Soo Oh. "Abstract 5138: Inhibition of kPNB1 and NUPR1 binding increase the anti-cancer drug sensitivity". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5138.
Texto completo da fontePark, Chan Hee, Seung Wook Ham, HyeKyoung Shin e Kyung Soo Oh. "Abstract 5138: Inhibition of kPNB1 and NUPR1 binding increase the anti-cancer drug sensitivity". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5138.
Texto completo da fonteChi, Ru-pin, Wei Wei, Michael Birrer e Virna D. Leaner. "Abstract 1069: Inhibition of the nuclear import receptor, KpnB1 synergizes with cisplatin toxicity in cervical cancer cells". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1069.
Texto completo da fonteKodama, Michiko, Takahiro Kodama, Kosuke Yoshihara, Kae Hashimoto, Seiji Mabuchi, Kenjiro Sawada, Tadashi Kimura, Neal Copeland e Nancy Jenkins. "Abstract 411:In vivopooled shRNA library identifies KPNB1 as a new drug target for epithelial ovarian cancer". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-411.
Texto completo da fonteStelma, Tamara, Alicia Chi, Anwar Mall, Dhiren Govender e Virna D. Leaner. "Abstract B09: KPNB1-mediated nuclear import is required for inflammatory cytokine expression, invasion and survival of cancer cells". In Abstracts: AACR International Conference: New Frontiers in Cancer Research; January 18-22, 2017; Cape Town, South Africa. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.newfront17-b09.
Texto completo da fonteDu, Wenwen, Jianjie Zhu, Yuanyuan Zeng, Yang Zhang, Zeyi Liu e Jian-An Huang. "KPNB1-mediated PD-L1 nuclear translocation promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signalling pathway". In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.1753.
Texto completo da fonteFielhaber, Jill A., Jason Tan, Ortal Attais, Ying Shan Han, Kwang Bo Joung e Arnold S. Kristof. "MTOR Regulates STAT1 Nuclear Trafficking Via KPNA1 In Lung Epithelial Cells". In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5112.
Texto completo da fonteCarden, Sarah, Pauline van der Watt, Patrizia Lavia e Virna Leaner. "Abstract B12: Investigating the specificity of the small molecule inhibitor INI-43 for Kpnβ1 in cancer cells". In Abstracts: AACR International Conference: New Frontiers in Cancer Research; January 18-22, 2017; Cape Town, South Africa. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.newfront17-b12.
Texto completo da fonte