Artigos de revistas sobre o tema "Known and Zero-Day Attacks Detection"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Known and Zero-Day Attacks Detection".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji e V.S.R.Pavan Kumar. Neeli. "Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks". Journal of Advanced Zoology 44, n.º 4 (2 de dezembro de 2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Texto completo da fonteHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne e Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection". Electronics 9, n.º 10 (14 de outubro de 2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Texto completo da fonteOhtani, Takahiro, Ryo Yamamoto e Satoshi Ohzahata. "IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT". Sensors 24, n.º 10 (18 de maio de 2024): 3218. http://dx.doi.org/10.3390/s24103218.
Texto completo da fonteHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut e Marianne A. Azer. "Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques". Electronics 12, n.º 3 (23 de janeiro de 2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Texto completo da fonteAl-Rushdan, Huthifh, Mohammad Shurman e Sharhabeel Alnabelsi. "On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks". International Arab Journal of Information Technology 17, n.º 4A (31 de julho de 2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Texto completo da fonteAlam, Naushad, e Muqeem Ahmed. "Zero-day Network Intrusion Detection using Machine Learning Approach". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 8s (18 de agosto de 2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Texto completo da fonteBu, Seok-Jun, e Sung-Bae Cho. "Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection". Electronics 10, n.º 12 (21 de junho de 2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Texto completo da fonteAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal e Ki-Il Kim. "Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection". Electronics 11, n.º 23 (28 de novembro de 2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Texto completo da fonteRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo e Ramon Canal. "Transfer-Learning-Based Intrusion Detection Framework in IoT Networks". Sensors 22, n.º 15 (27 de julho de 2022): 5621. http://dx.doi.org/10.3390/s22155621.
Texto completo da fonteSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh e Paulo J. Sequeira Gonçalves. "Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)". Sensors 23, n.º 12 (9 de junho de 2023): 5459. http://dx.doi.org/10.3390/s23125459.
Texto completo da fonteMala, V., e K. Meena. "Hybrid classification model to detect advanced intrusions using data mining techniques". International Journal of Engineering & Technology 7, n.º 2.4 (10 de março de 2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Texto completo da fonteDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon e Sajjan Shiva. "Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks". Algorithms 17, n.º 3 (24 de fevereiro de 2024): 99. http://dx.doi.org/10.3390/a17030099.
Texto completo da fonteNkongolo, Mike, Jacobus Philippus van Deventer e Sydney Mambwe Kasongo. "UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats". Information 12, n.º 10 (30 de setembro de 2021): 405. http://dx.doi.org/10.3390/info12100405.
Texto completo da fontePeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou e Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers". Sensors 23, n.º 2 (12 de janeiro de 2023): 900. http://dx.doi.org/10.3390/s23020900.
Texto completo da fonteWang, Hui, Yifeng Wang e Yuanbo Guo. "Unknown network attack detection method based on reinforcement zero-shot learning". Journal of Physics: Conference Series 2303, n.º 1 (1 de julho de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Texto completo da fonteSubbarayalu, Venkatraman, e Maria Anu Vensuslaus. "An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata". Drones 7, n.º 4 (3 de abril de 2023): 248. http://dx.doi.org/10.3390/drones7040248.
Texto completo da fonteEmmah, Victor T., Chidiebere Ugwu e Laeticia N. Onyejegbu. "An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation". European Journal of Electrical Engineering and Computer Science 5, n.º 4 (19 de agosto de 2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Texto completo da fonteYao, Wenbin, Longcan Hu, Yingying Hou e Xiaoyong Li. "A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT". Sensors 23, n.º 8 (20 de abril de 2023): 4141. http://dx.doi.org/10.3390/s23084141.
Texto completo da fonteMehedy, Hasan MD. "Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de maio de 2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Texto completo da fonteNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić e Ulrike Kleb. "APT-Attack Detection Based on Multi-Stage Autoencoders". Applied Sciences 12, n.º 13 (5 de julho de 2022): 6816. http://dx.doi.org/10.3390/app12136816.
Texto completo da fonteVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash e Md. Shakeel Ahmed. "Comparative analysis on intrusion detection system using machine learning approach". World Journal of Advanced Research and Reviews 21, n.º 3 (30 de março de 2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Texto completo da fonteKhraisat, Gondal, Vamplew, Kamruzzaman e Alazab. "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks". Electronics 8, n.º 11 (23 de outubro de 2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Texto completo da fonteMerugu, Akshay, Hrishikesh Goud Chagapuram e Rahul Bollepalli. "Spam Email Detection Using Convolutional Neural Networks: An Empirical Study". International Journal for Research in Applied Science and Engineering Technology 11, n.º 10 (31 de outubro de 2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Texto completo da fonteBhaya, Wesam S., e Mustafa A. Ali. "Review on Malware and Malware Detection Using Data Mining Techniques". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, n.º 5 (29 de novembro de 2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Texto completo da fonteGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich e Dmitry Aleksandrovich Rybolovlev. "A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems". Proceedings of the Institute for System Programming of the RAS 34, n.º 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Texto completo da fonteRahman, Rizwan Ur, e Deepak Singh Tomar. "Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set". International Journal of Digital Crime and Forensics 13, n.º 6 (1 de novembro de 2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Texto completo da fonteDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning". INFORMATION TECHNOLOGY IN INDUSTRY 9, n.º 2 (31 de março de 2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Texto completo da fonteP. Arul, Et al. "Predicting the Attacks in IoT Devices using DP Algorithm". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 11 (30 de novembro de 2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Texto completo da fonteOthman, Trifa S., e Saman M. Abdullah. "An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, n.º 1 (22 de maio de 2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Texto completo da fonteDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi e Om Surase. "Weighted Multiclass Intrusion Detection System". ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Texto completo da fonteBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN e DMYTRO DENYSIUK. "RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE". Computer systems and information technologies, n.º 3 (14 de abril de 2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Texto completo da fonteM.R., Amal, e Venkadesh P. "Review of Cyber Attack Detection: Honeypot System". Webology 19, n.º 1 (20 de janeiro de 2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Texto completo da fonteKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman e Ammar Alazab. "Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine". Electronics 9, n.º 1 (17 de janeiro de 2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Texto completo da fonteСычугов, А. А., e М. М. Греков. "Application of generative adversarial networks in anomaly detection systems". МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 9, n.º 1(32) (31 de janeiro de 2021): 3–4. http://dx.doi.org/10.26102/2310-6018/2021.32.1.003.
Texto completo da fonteAl-Sabbagh, Kais Said, Hamid M. Ali e Elaf Sabah Abbas. "Development an Anomaly Network Intrusion Detection System Using Neural Network". Journal of Engineering 18, n.º 12 (1 de dezembro de 2012): 1325–34. http://dx.doi.org/10.31026/j.eng.2012.12.03.
Texto completo da fonteIliyasu, Auwal Sani, Usman Alhaji Abdurrahman e Lirong Zheng. "Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder". Applied Sciences 12, n.º 5 (24 de fevereiro de 2022): 2351. http://dx.doi.org/10.3390/app12052351.
Texto completo da fonteArshi, M., MD Nasreen e Karanam Madhavi. "A Survey of DDOS Attacks Using Machine Learning Techniques". E3S Web of Conferences 184 (2020): 01052. http://dx.doi.org/10.1051/e3sconf/202018401052.
Texto completo da fonteKumar Lingamallu, Raghu, Pradeep Balasubramani, S. Arvind, P. Srinivasa Rao, Veeraswamy Ammisetty, Koppuravuri Gurnadha Gupta, M. N. Sharath, Y. J. Nagendra Kumar e Vaibhav Mittal. "Securing IoT networks: A fog-based framework for malicious device detection". MATEC Web of Conferences 392 (2024): 01103. http://dx.doi.org/10.1051/matecconf/202439201103.
Texto completo da fonteKikelomo, Akinwole Agnes, Yekini Nureni Asafe e Ogundele Israel Oludayo. "Malware Detection System Using Mathematics of Random Forest Classifier". International Journal of Advances in Scientific Research and Engineering 09, n.º 03 (2023): 45–53. http://dx.doi.org/10.31695/ijasre.2023.9.3.6.
Texto completo da fonteZoppi, Tommaso, Mohamad Gharib, Muhammad Atif e Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems". ACM Transactions on Cyber-Physical Systems 5, n.º 4 (31 de outubro de 2021): 1–27. http://dx.doi.org/10.1145/3467470.
Texto completo da fonteLi, Shiyun, e Omar Dib. "Enhancing Online Security: A Novel Machine Learning Framework for Robust Detection of Known and Unknown Malicious URLs". Journal of Theoretical and Applied Electronic Commerce Research 19, n.º 4 (26 de outubro de 2024): 2919–60. http://dx.doi.org/10.3390/jtaer19040141.
Texto completo da fonteSamantray, Om Prakash, e Satya Narayan Tripathy. "An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms". International Journal of Information Security and Privacy 15, n.º 4 (outubro de 2021): 18–30. http://dx.doi.org/10.4018/ijisp.2021100102.
Texto completo da fonteSerinelli, Benedetto Marco, Anastasija Collen e Niels Alexander Nijdam. "On the analysis of open source datasets: validating IDS implementation for well-known and zero day attack detection". Procedia Computer Science 191 (2021): 192–99. http://dx.doi.org/10.1016/j.procs.2021.07.024.
Texto completo da fonteRangaraju, Sakthiswaran. "AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION". EPH - International Journal of Science And Engineering 9, n.º 3 (1 de dezembro de 2023): 30–35. http://dx.doi.org/10.53555/ephijse.v9i3.211.
Texto completo da fonteAlsulami, Basmah, Abdulmohsen Almalawi e Adil Fahad. "Toward an Efficient Automatic Self-Augmentation Labeling Tool for Intrusion Detection Based on a Semi-Supervised Approach". Applied Sciences 12, n.º 14 (17 de julho de 2022): 7189. http://dx.doi.org/10.3390/app12147189.
Texto completo da fonteH., Manjunath, e Saravana Kumar. "Network Intrusion Detection System using Convolution Recurrent Neural Networks and NSL-KDD Dataset". Fusion: Practice and Applications 13, n.º 1 (2023): 117–25. http://dx.doi.org/10.54216/fpa.130109.
Texto completo da fonteBalaji K. M. e Subbulakshmi T. "Malware Analysis Using Classification and Clustering Algorithms". International Journal of e-Collaboration 18, n.º 1 (janeiro de 2022): 1–26. http://dx.doi.org/10.4018/ijec.290290.
Texto completo da fonteDung, Nguyễn Thị, Nguyễn Văn Quân e Nguyễn Việt Hùng. "Ứng dụng mô hình học sâu trong phát hiện tấn công trinh sát mạng". Journal of Science and Technology on Information security 2, n.º 16 (13 de fevereiro de 2023): 60–72. http://dx.doi.org/10.54654/isj.v1i16.922.
Texto completo da fonteU., Kumaran, Thangam S., T. V. Nidhin Prabhakar, Jana Selvaganesan e Vishwas H.N. "Adversarial Defense: A GAN-IF Based Cyber-security Model for Intrusion Detection in Software Piracy". Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14, n.º 4 (23 de dezembro de 2023): 96–114. http://dx.doi.org/10.58346/jowua.2023.i4.008.
Texto completo da fonteJagan, Shanmugam, Ashish Ashish, Miroslav Mahdal, Kenneth Ruth Isabels, Jyoti Dhanke, Parita Jain e Muniyandy Elangovan. "A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms". Mathematics 11, n.º 13 (24 de junho de 2023): 2840. http://dx.doi.org/10.3390/math11132840.
Texto completo da fonte