Literatura científica selecionada sobre o tema "Kidney-glomeruli segmentation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Kidney-glomeruli segmentation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Kidney-glomeruli segmentation"
Altini, Nicola, Giacomo Donato Cascarano, Antonio Brunetti, Irio De Feudis, Domenico Buongiorno, Michele Rossini, Francesco Pesce, Loreto Gesualdo e Vitoantonio Bevilacqua. "A Deep Learning Instance Segmentation Approach for Global Glomerulosclerosis Assessment in Donor Kidney Biopsies". Electronics 9, n.º 11 (25 de outubro de 2020): 1768. http://dx.doi.org/10.3390/electronics9111768.
Texto completo da fonteHan, Yutong, Zhan Zhang, Yafeng Li, Guoqing Fan, Mengfei Liang, Zhijie Liu, Shuo Nie, Kefu Ning, Qingming Luo e Jing Yuan. "FastCellpose: A Fast and Accurate Deep-Learning Framework for Segmentation of All Glomeruli in Mouse Whole-Kidney Microscopic Optical Images". Cells 12, n.º 23 (30 de novembro de 2023): 2753. http://dx.doi.org/10.3390/cells12232753.
Texto completo da fonteAltini, Nicola, Giacomo Donato Cascarano, Antonio Brunetti, Francescomaria Marino, Maria Teresa Rocchetti, Silvia Matino, Umberto Venere et al. "Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections". Electronics 9, n.º 3 (19 de março de 2020): 503. http://dx.doi.org/10.3390/electronics9030503.
Texto completo da fonteDimitri, Giovanna Maria, Paolo Andreini, Simone Bonechi, Monica Bianchini, Alessandro Mecocci, Franco Scarselli, Alberto Zacchi, Guido Garosi, Thomas Marcuzzo e Sergio Antonio Tripodi. "Deep Learning Approaches for the Segmentation of Glomeruli in Kidney Histopathological Images". Mathematics 10, n.º 11 (5 de junho de 2022): 1934. http://dx.doi.org/10.3390/math10111934.
Texto completo da fonteJavvadi, Sai. "Evaluating the Impact of Color Normalization on Kidney Image Segmentation". International Journal on Cybernetics & Informatics 12, n.º 5 (12 de agosto de 2023): 93–105. http://dx.doi.org/10.5121/ijci.2023.120509.
Texto completo da fonteHermsen, Meyke, Thomas de Bel, Marjolijn den Boer, Eric J. Steenbergen, Jesper Kers, Sandrine Florquin, Joris J. T. H. Roelofs et al. "Deep Learning–Based Histopathologic Assessment of Kidney Tissue". Journal of the American Society of Nephrology 30, n.º 10 (5 de setembro de 2019): 1968–79. http://dx.doi.org/10.1681/asn.2019020144.
Texto completo da fonteKawazoe, Yoshimasa, Kiminori Shimamoto, Ryohei Yamaguchi, Issei Nakamura, Kota Yoneda, Emiko Shinohara, Yukako Shintani-Domoto, Tetsuo Ushiku, Tatsuo Tsukamoto e Kazuhiko Ohe. "Computational Pipeline for Glomerular Segmentation and Association of the Quantified Regions with Prognosis of Kidney Function in IgA Nephropathy". Diagnostics 12, n.º 12 (25 de novembro de 2022): 2955. http://dx.doi.org/10.3390/diagnostics12122955.
Texto completo da fonteMarechal, Elise, Adrien Jaugey, Georges Tarris, Michel Paindavoine, Jean Seibel, Laurent Martin, Mathilde Funes de la Vega et al. "Automatic Evaluation of Histological Prognostic Factors Using Two Consecutive Convolutional Neural Networks on Kidney Samples". Clinical Journal of the American Society of Nephrology 17, n.º 2 (3 de dezembro de 2021): 260–70. http://dx.doi.org/10.2215/cjn.07830621.
Texto completo da fonteDr. Harikiran Jonnadula, Sitanaboina S. L. Parvathi,. "Small Blob Detection and Classification in 3D MRI Human Kidney Images Using IMBKM and EDCNN Classifier". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, n.º 5 (11 de abril de 2021): 629–42. http://dx.doi.org/10.17762/turcomat.v12i5.1061.
Texto completo da fonteCelia, A. I., X. Yang, M. A. Petri, A. Rosenberg e A. Fava. "POS0288 DEGRANULATING PR3+ MYELOID CELLS CHARACTERIZE PROLIFERATIVE LUPUS NEPHRITIS". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de maio de 2023): 385.2–386. http://dx.doi.org/10.1136/annrheumdis-2023-eular.767.
Texto completo da fonteTeses / dissertações sobre o assunto "Kidney-glomeruli segmentation"
Nisar, Zeeshan. "Self-supervised learning in the presence of limited labelled data for digital histopathology". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Texto completo da fonteA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision