Artigos de revistas sobre o tema "Kernel mean embedding"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Kernel mean embedding".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Berquin, Yann. "Kernel mean embedding vs kernel density estimation: A quantum perspective." Physics Letters A 528 (December 2024): 130047. http://dx.doi.org/10.1016/j.physleta.2024.130047.
Texto completo da fonteJorgensen, Palle E. T., Myung-Sin Song, and James Tian. "Conditional mean embedding and optimal feature selection via positive definite kernels." Opuscula Mathematica 44, no. 1 (2024): 79–103. http://dx.doi.org/10.7494/opmath.2024.44.1.79.
Texto completo da fonteChen, Wei, Jun-Xiang Mao, and Min-Ling Zhang. "Learnware Specification via Label-Aware Neural Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 15857–65. https://doi.org/10.1609/aaai.v39i15.33741.
Texto completo da fonteMuandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. "Kernel Mean Embedding of Distributions: A Review and Beyond." Foundations and Trends® in Machine Learning 10, no. 1-2 (2017): 1–141. http://dx.doi.org/10.1561/2200000060.
Texto completo da fonteVan Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. "Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding." Pharmaceutics 12, no. 3 (2020): 271. http://dx.doi.org/10.3390/pharmaceutics12030271.
Texto completo da fonteXu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation Graph Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Texto completo da fonteRustamov, Raif M., and James T. Klosowski. "Kernel mean embedding based hypothesis tests for comparing spatial point patterns." Spatial Statistics 38 (August 2020): 100459. http://dx.doi.org/10.1016/j.spasta.2020.100459.
Texto completo da fonteHou, Boya, Sina Sanjari, Nathan Dahlin, and Subhonmesh Bose. "Compressed Decentralized Learning of Conditional Mean Embedding Operators in Reproducing Kernel Hilbert Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 7902–9. http://dx.doi.org/10.1609/aaai.v37i7.25956.
Texto completo da fonteSegera, Davies, Mwangi Mbuthia, and Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis." BioMed Research International 2019 (December 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Texto completo da fonteMuralinath, Rashmi N., Vishwambhar Pathak, and Prabhat K. Mahanti. "Metastable Substructure Embedding and Robust Classification of Multichannel EEG Data Using Spectral Graph Kernels." Future Internet 17, no. 3 (2025): 102. https://doi.org/10.3390/fi17030102.
Texto completo da fonteWang, Yufan, Zijing Wang, Kai Ming Ting, and Yuanyi Shang. "A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection." Journal of Artificial Intelligence Research 79 (March 13, 2024): 865–93. http://dx.doi.org/10.1613/jair.1.15849.
Texto completo da fonteBrandman, David M., Michael C. Burkhart, Jessica Kelemen, Brian Franco, Matthew T. Harrison, and Leigh R. Hochberg. "Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression." Neural Computation 30, no. 11 (2018): 2986–3008. http://dx.doi.org/10.1162/neco_a_01129.
Texto completo da fonteShi, Zhenbo, Xiaoman Liu, Yuxuan Zhang, et al. "Stop Diverse OOD Attacks: Knowledge Ensemble for Reliable Defense." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20436–44. https://doi.org/10.1609/aaai.v39i19.34251.
Texto completo da fonteAli, Sarwan, and Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences." J 6, no. 4 (2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Texto completo da fonteZhang, Hansong, Shikun Li, Pengju Wang, Dan Zeng, and Shiming Ge. "M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 9314–22. http://dx.doi.org/10.1609/aaai.v38i8.28784.
Texto completo da fonteSolodukha, Roman. "STATISTICAL STEGANALYSIS OF PHOTOREALISTIC IMAGES USING GRADIENT PATHS." Voprosy kiberbezopasnosti, no. 1(47) (2022): 26–36. http://dx.doi.org/10.21681/2311-3456-2022-1-26-36.
Texto completo da fonteTing, Kai Ming, Zongyou Liu, Hang Zhang, and Ye Zhu. "A new distributional treatment for time series and an anomaly detection investigation." Proceedings of the VLDB Endowment 15, no. 11 (2022): 2321–33. http://dx.doi.org/10.14778/3551793.3551796.
Texto completo da fonteQian, Hangwei, Sinno Jialin Pan, and Chunyan Miao. "Distribution-Based Semi-Supervised Learning for Activity Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 7699–706. http://dx.doi.org/10.1609/aaai.v33i01.33017699.
Texto completo da fonteHuang, Shimeng, Elisabeth Ailer, Niki Kilbertus, and Niklas Pfister. "Supervised learning and model analysis with compositional data." PLOS Computational Biology 19, no. 6 (2023): e1011240. http://dx.doi.org/10.1371/journal.pcbi.1011240.
Texto completo da fonteBie, Mei, Huan Xu, Quanle Liu, Yan Gao, Kai Song, and Xiangjiu Che. "DA-FER: Domain Adaptive Facial Expression Recognition." Applied Sciences 13, no. 10 (2023): 6314. http://dx.doi.org/10.3390/app13106314.
Texto completo da fonteJi, Bo-Ya, Liang-Rui Pan, Ji-Ren Zhou, Zhu-Hong You, and Shao-Liang Peng. "SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation." Biology 11, no. 5 (2022): 777. http://dx.doi.org/10.3390/biology11050777.
Texto completo da fonteHarris, Matthew. "KLRfome - Kernel Logistic Regression on Focal Mean Embeddings." Journal of Open Source Software 4, no. 35 (2019): 722. http://dx.doi.org/10.21105/joss.00722.
Texto completo da fonteDe Cannière, Hélène, Federico Corradi, Christophe J. P. Smeets, et al. "Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation." Sensors 20, no. 12 (2020): 3601. http://dx.doi.org/10.3390/s20123601.
Texto completo da fonteHempel, John. "One-relator surface groups." Mathematical Proceedings of the Cambridge Philosophical Society 108, no. 3 (1990): 467–74. http://dx.doi.org/10.1017/s030500410006936x.
Texto completo da fonteDong, Alice X. D., Jennifer S. K. Chan, and Gareth W. Peters. "RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES." ASTIN Bulletin 45, no. 3 (2015): 503–50. http://dx.doi.org/10.1017/asb.2015.8.
Texto completo da fonteSaito, Shota. "Hypergraph Modeling via Spectral Embedding Connection: Hypergraph Cut, Weighted Kernel k-Means, and Heat Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 8141–49. http://dx.doi.org/10.1609/aaai.v36i7.20787.
Texto completo da fonteZang, Xian, and Kil To Chong. "Embedding Global Optimization and Kernelization into Fuzzy C-Means Clustering for Consonant/Vowel Segmentation." Applied Mechanics and Materials 419 (October 2013): 814–19. http://dx.doi.org/10.4028/www.scientific.net/amm.419.814.
Texto completo da fonteKanagawa, Motonobu, Yu Nishiyama, Arthur Gretton, and Kenji Fukumizu. "Filtering with State-Observation Examples via Kernel Monte Carlo Filter." Neural Computation 28, no. 2 (2016): 382–444. http://dx.doi.org/10.1162/neco_a_00806.
Texto completo da fonteZhang, Yi, Jie Lu, Feng Liu, et al. "Does deep learning help topic extraction? A kernel k-means clustering method with word embedding." Journal of Informetrics 12, no. 4 (2018): 1099–117. http://dx.doi.org/10.1016/j.joi.2018.09.004.
Texto completo da fonteTamas, Ambrus, and Balazs Csanad Csaji. "Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings." IEEE Control Systems Letters 6 (2022): 860–65. http://dx.doi.org/10.1109/lcsys.2021.3087409.
Texto completo da fonteCong, Zhang, Zeng Shan, and Zhang Hui. "Electrocardiography Classification Based on Revised Locally Linear Embedding Algorithm and Kernel-Based Fuzzy C-Means Clustering." Journal of Medical Imaging and Health Informatics 4, no. 6 (2014): 916–21. http://dx.doi.org/10.1166/jmihi.2014.1342.
Texto completo da fonteYasemin, Atayolu*, and Kutlu Yakup. "Effective Use of Content as a Feature in IMDB Dataset Analysis." Journal of Artificial Intelligence with Applications 4, no. 1 (2023): 1–6. https://doi.org/10.5281/zenodo.14587323.
Texto completo da fonteLiu, Yang, Jiayun Tian, Xuemei Liu, et al. "Research on a Knowledge Graph Embedding Method Based on Improved Convolutional Neural Networks for Hydraulic Engineering." Electronics 12, no. 14 (2023): 3099. http://dx.doi.org/10.3390/electronics12143099.
Texto completo da fonteTschan-Plessl, Astrid, Eivind Heggernes Ask, Thea Johanne Gjerdingen, et al. "System-Level Disease-Driven Immune Signatures in Patients with Diffuse Large B-Cell Lymphoma Associated with Poor Survival." Blood 134, Supplement_1 (2019): 2897. http://dx.doi.org/10.1182/blood-2019-131359.
Texto completo da fonteHuang, Jingxu, Qiong Liu, Lang Xiang, Guangrui Li, Yiqing Zhang, and Wenbai Chen. "A Lightweight Residual Model for Corrosion Segmentation with Local Contextual Information." Applied Sciences 12, no. 18 (2022): 9095. http://dx.doi.org/10.3390/app12189095.
Texto completo da fonteKusaba, Minoru, Yoshihiro Hayashi, Chang Liu, Araki Wakiuchi, and Ryo Yoshida. "Representation of materials by kernel mean embedding." Physical Review B 108, no. 13 (2023). http://dx.doi.org/10.1103/physrevb.108.134107.
Texto completo da fonteWu, Xi-Zhu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. "Model Reuse with Reduced Kernel Mean Embedding Specification." IEEE Transactions on Knowledge and Data Engineering, 2021, 1. http://dx.doi.org/10.1109/tkde.2021.3086619.
Texto completo da fonteGuo, Liping, Jimin Wang, Yanlong Zhao, and Ji-Feng Zhang. "Consensus-Based Distributed Nonlinear Filtering With Kernel Mean Embedding." IEEE Transactions on Aerospace and Electronic Systems, 2024, 1–16. https://doi.org/10.1109/taes.2024.3513280.
Texto completo da fonteLi, Guofa, Zefeng Ji, Yunlong Chang, Shen Li, Xingda Qu, and Dongpu Cao. "ML-ANet: A Transfer Learning Approach Using Adaptation Network for Multi-label Image Classification in Autonomous Driving." Chinese Journal of Mechanical Engineering 34, no. 1 (2021). http://dx.doi.org/10.1186/s10033-021-00598-9.
Texto completo da fonteAlyakin, Anton A., Joshua Agterberg, Hayden S. Helm, and Carey E. Priebe. "Correcting a nonparametric two-sample graph hypothesis test for graphs with different numbers of vertices with applications to connectomics." Applied Network Science 9, no. 1 (2024). http://dx.doi.org/10.1007/s41109-023-00607-x.
Texto completo da fonteHayati, Saeed, Kenji Fukumizu, and Afshin Parvardeh. "Kernel Mean Embedding of Probability Measures and its Applications to Functional Data Analysis." Scandinavian Journal of Statistics, October 12, 2023. http://dx.doi.org/10.1111/sjos.12691.
Texto completo da fonteGual-Arnau, Ximo, and Juan Monterde. "Enhancing a Kernel Method for Shape Analysis in Kendall Space." Journal of Mathematical Imaging and Vision 67, no. 2 (2025). https://doi.org/10.1007/s10851-025-01235-z.
Texto completo da fonteDas, Srinjoy, Hrushikesh N. Mhaskar, and Alexander Cloninger. "Kernel Distance Measures for Time Series, Random Fields and Other Structured Data." Frontiers in Applied Mathematics and Statistics 7 (December 22, 2021). http://dx.doi.org/10.3389/fams.2021.787455.
Texto completo da fonteWynne, George, and Stanislav Nagy. "Statistical Depth Meets Machine Learning: Kernel Mean Embeddings and Depth in Functional Data Analysis." International Statistical Review, March 16, 2025. https://doi.org/10.1111/insr.12611.
Texto completo da fonteGarcía Meixide, Carlos, and Marcos Matabuena. "Causal survival embeddings: Non-parametric counterfactual inference under right-censoring." Statistical Methods in Medical Research, February 11, 2025. https://doi.org/10.1177/09622802241311455.
Texto completo da fonteAlquier, P., and M. Gerber. "Universal Robust Regression via Maximum Mean Discrepancy." Biometrika, May 10, 2023. http://dx.doi.org/10.1093/biomet/asad031.
Texto completo da fonteJarne, Cecilia, Ben Griffin, and Diego Vidaurre. "Predicting Subject Traits From Brain Spectral Signatures: An Application to Brain Ageing." Human Brain Mapping 45, no. 18 (2024). https://doi.org/10.1002/hbm.70096.
Texto completo da fonteWu, Jiawei, Teng Wang, Lijun Yang, and Jingxuan Li. "Extrapolation method of flame nonlinear thermoacoustic response in the time domain based on the kernel embedding of conditional distribution." Physics of Fluids 37, no. 3 (2025). https://doi.org/10.1063/5.0256838.
Texto completo da fonteGachon, Erell, Jérémie Bigot, Elsa Cazelles, et al. "Low Dimensional Representation of Multi‐Patient Flow Cytometry Datasets Using Optimal Transport for Measurable Residual Disease Detection in Leukemia." Cytometry Part A, March 3, 2025. https://doi.org/10.1002/cyto.a.24918.
Texto completo da fonteHUNG, MING HUI, Chun-Hung Chen, Yu-Hsuan Tseng, and Chin-Chou Huang. "Abstract 4145524: Artificial Intelligence-Based Screening for Blood Pressure Phenotypes of White-coat and Masked Hypertension in Outpatient Settings." Circulation 150, Suppl_1 (2024). http://dx.doi.org/10.1161/circ.150.suppl_1.4145524.
Texto completo da fonte