Literatura científica selecionada sobre o tema "Kernel mean embedding"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Kernel mean embedding".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Kernel mean embedding"
Jorgensen, Palle E. T., Myung-Sin Song e James Tian. "Conditional mean embedding and optimal feature selection via positive definite kernels". Opuscula Mathematica 44, n.º 1 (2024): 79–103. http://dx.doi.org/10.7494/opmath.2024.44.1.79.
Texto completo da fonteMuandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur e Bernhard Schölkopf. "Kernel Mean Embedding of Distributions: A Review and Beyond". Foundations and Trends® in Machine Learning 10, n.º 1-2 (2017): 1–141. http://dx.doi.org/10.1561/2200000060.
Texto completo da fonteVan Hauwermeiren, Daan, Michiel Stock, Thomas De Beer e Ingmar Nopens. "Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding". Pharmaceutics 12, n.º 3 (16 de março de 2020): 271. http://dx.doi.org/10.3390/pharmaceutics12030271.
Texto completo da fonteXu, Bi-Cun, Kai Ming Ting e Yuan Jiang. "Isolation Graph Kernel". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de maio de 2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Texto completo da fonteRustamov, Raif M., e James T. Klosowski. "Kernel mean embedding based hypothesis tests for comparing spatial point patterns". Spatial Statistics 38 (agosto de 2020): 100459. http://dx.doi.org/10.1016/j.spasta.2020.100459.
Texto completo da fonteHou, Boya, Sina Sanjari, Nathan Dahlin e Subhonmesh Bose. "Compressed Decentralized Learning of Conditional Mean Embedding Operators in Reproducing Kernel Hilbert Spaces". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junho de 2023): 7902–9. http://dx.doi.org/10.1609/aaai.v37i7.25956.
Texto completo da fonteSegera, Davies, Mwangi Mbuthia e Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis". BioMed Research International 2019 (16 de dezembro de 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Texto completo da fonteWang, Yufan, Zijing Wang, Kai Ming Ting e Yuanyi Shang. "A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection". Journal of Artificial Intelligence Research 79 (13 de março de 2024): 865–93. http://dx.doi.org/10.1613/jair.1.15849.
Texto completo da fonteBrandman, David M., Michael C. Burkhart, Jessica Kelemen, Brian Franco, Matthew T. Harrison e Leigh R. Hochberg. "Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression". Neural Computation 30, n.º 11 (novembro de 2018): 2986–3008. http://dx.doi.org/10.1162/neco_a_01129.
Texto completo da fonteAli, Sarwan, e Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences". J 6, n.º 4 (31 de outubro de 2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Texto completo da fonteTeses / dissertações sobre o assunto "Kernel mean embedding"
Hsu, Yuan-Shuo Kelvin. "Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24309.
Texto completo da fonteMuandet, Krikamol [Verfasser], e Bernhard [Akademischer Betreuer] Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Texto completo da fonteMuandet, Krikamol Verfasser], e Bernhard [Akademischer Betreuer] [Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Texto completo da fonteFermanian, Jean-Baptiste. "High dimensional multiple means estimation and testing with applications to machine learning". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM035.
Texto completo da fonteIn this thesis, we study the influence of high dimension in testing and estimation problems. We analyze the dimension dependence of the separation rate of a closeness test and of the quadratic risk of multiple vector estimation. We complement existing results by studying these dependencies in the case of non-isotropic distributions. For such distributions, the role of dimension is played by notions of effective dimension defined from the covariance of the distributions. This framework covers infinite-dimensional data such as kernel mean embedding, a machine learning tool we will be seeking to estimate. Using this analysis, we construct methods for simultaneously estimating mean vectors of different distributions from independent samples of each. These estimators perform better theoretically and practically than the empirical mean in unfavorable situations where the (effective) dimension is large. These methods make explicit or implicit use of the relative ease of testing compared with estimation. They are based on the construction of estimators of distances and moments of covariance, for which we provide non-asymptotic concentration bounds. Particular interest is given to the study of bounded data, for which a specific analysis is required. Our methods are accompanied by a minimax analysis justifying their optimality. In a final section, we propose an interpretation of the attention mechanism used in Transformer neural networks as a multiple vector estimation problem. In a simplified framework, this mechanism shares similar ideas with our approaches, and we highlight its denoising effect in high dimension
Chen, Tian Qi. "Deep kernel mean embeddings for generative modeling and feedforward style transfer". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62668.
Texto completo da fonteScience, Faculty of
Computer Science, Department of
Graduate
Livros sobre o assunto "Kernel mean embedding"
Muandet, Krikamol, Kenji Fukumizu, Bharath Kumar Sriperumbudur VanGeepuram e Bernhard Schölkopf. Kernel Mean Embedding of Distributions: A Review and Beyond. Now Publishers, 2017.
Encontre o texto completo da fonteSriperumbudur, Bharath K. Kernel Mean Embedding of Distributions: A Review and Beyond. 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Kernel mean embedding"
Fukumizu, Kenji. "Nonparametric Bayesian Inference with Kernel Mean Embedding". In Modern Methodology and Applications in Spatial-Temporal Modeling, 1–24. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55339-7_1.
Texto completo da fonteWickstrøm, Kristoffer, J. Emmanuel Johnson, Sigurd Løkse, Gustau Camps-Valls, Karl Øyvind Mikalsen, Michael Kampffmeyer e Robert Jenssen. "The Kernelized Taylor Diagram". In Communications in Computer and Information Science, 125–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_10.
Texto completo da fonteHsu, Kelvin, Richard Nock e Fabio Ramos. "Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds". In Machine Learning and Knowledge Discovery in Databases, 227–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10928-8_14.
Texto completo da fonteXie, Yi, Zhi-Hao Tan, Yuan Jiang e Zhi-Hua Zhou. "Identifying Helpful Learnwares Without Examining the Whole Market". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230585.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Kernel mean embedding"
Luo, Mingjie, Jie Zhou e Qingke Zou. "Multisensor Estimation Fusion Based on Kernel Mean Embedding". In 2024 27th International Conference on Information Fusion (FUSION), 1–7. IEEE, 2024. http://dx.doi.org/10.23919/fusion59988.2024.10706487.
Texto completo da fonteGUAN, ZENGDA, e JUAN ZHANG. "Quantitative Associative Classification Based on Kernel Mean Embedding". In CSAI 2020: 2020 4th International Conference on Computer Science and Artificial Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3445815.3445827.
Texto completo da fonteTang, Shuhao, Hao Tian, Xiaofeng Cao e Wei Ye. "Deep Hierarchical Graph Alignment Kernels". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/549.
Texto completo da fonteDing, Xiao, Bibo Cai, Ting Liu e Qiankun Shi. "Domain Adaptation via Tree Kernel Based Maximum Mean Discrepancy for User Consumption Intention Identification". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/560.
Texto completo da fonteZhu, Jia-Jie, Wittawat Jitkrittum, Moritz Diehl e Bernhard Scholkopf. "Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem". In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9303938.
Texto completo da fonteRomao, Licio, Ashish R. Hota e Alessandro Abate. "Distributionally Robust Optimal and Safe Control of Stochastic Systems via Kernel Conditional Mean Embedding". In 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. http://dx.doi.org/10.1109/cdc49753.2023.10383997.
Texto completo da fonteLiu, Qiao, e Hui Xue. "Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/378.
Texto completo da fonteTan, Peng, Zhi-Hao Tan, Yuan Jiang e Zhi-Hua Zhou. "Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/471.
Texto completo da fonteShan, Siyuan, Vishal Athreya Baskaran, Haidong Yi, Jolene Ranek, Natalie Stanley e Junier B. Oliva. "Transparent single-cell set classification with kernel mean embeddings". In BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3535508.3545538.
Texto completo da fonteElgohary, Ahmed, Ahmed K. Farahat, Mohamed S. Kamel e Fakhri Karray. "Embed and Conquer: Scalable Embeddings for Kernel k-Means on MapReduce". In Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.49.
Texto completo da fonte