Artigos de revistas sobre o tema "Jets Fluid dynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Jets Fluid dynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
NORMAN, MICHAEL L. "Fluid Dynamics of Astrophysical Jets". Annals of the New York Academy of Sciences 617, n.º 1 Nonlinear Ast (dezembro de 1990): 217–33. http://dx.doi.org/10.1111/j.1749-6632.1990.tb37807.x.
Texto completo da fonteESEN, OĞUL, e HASAN GÜMRAL. "LIFTS, JETS AND REDUCED DYNAMICS". International Journal of Geometric Methods in Modern Physics 08, n.º 02 (março de 2011): 331–44. http://dx.doi.org/10.1142/s0219887811005166.
Texto completo da fonteBeutner, Thomas, e Christopher Rumsey. "Introduction: Computational Fluid Dynamics Validation for Synthetic Jets". AIAA Journal 44, n.º 2 (fevereiro de 2006): 193. http://dx.doi.org/10.2514/1.22547.
Texto completo da fonteLópez-Arias, T., L. M. Gratton, G. Zendri e S. Oss. "Using jets of air to teach fluid dynamics". Physics Education 46, n.º 4 (29 de junho de 2011): 373–75. http://dx.doi.org/10.1088/0031-9120/46/4/f02.
Texto completo da fonteRamos, J. I. "Fluid dynamics of slender, thin, annular liquid jets". International Journal for Numerical Methods in Fluids 21, n.º 9 (15 de novembro de 1995): 735–61. http://dx.doi.org/10.1002/fld.1650210904.
Texto completo da fonteMurzabaeb, M. T., e A. L. Yarin. "Dynamics of sprinkler jets". Fluid Dynamics 20, n.º 5 (1986): 715–22. http://dx.doi.org/10.1007/bf01050084.
Texto completo da fonteHERNÁNDEZ C., I., F. A. ACOSTA G., A. H. CASTILLEJOS E. e J. I. MINCHACA M. "The Fluid Dynamics of Secondary Cooling Air-Mist Jets". Metallurgical and Materials Transactions B 39, n.º 5 (outubro de 2008): 746–63. http://dx.doi.org/10.1007/s11663-008-9179-x.
Texto completo da fonteMitrovic, J., e A. Ricoeur. "Fluid dynamics and condensation-heating of capillary liquid jets". International Journal of Heat and Mass Transfer 38, n.º 8 (maio de 1995): 1483–94. http://dx.doi.org/10.1016/0017-9310(94)00258-w.
Texto completo da fonteMiller, Steven A. E., Jérémy Veltin, Philip J. Morris e Dennis K. McLaughlin. "Assessment of Computational Fluid Dynamics for Supersonic Shock Containing Jets". AIAA Journal 47, n.º 11 (novembro de 2009): 2738–46. http://dx.doi.org/10.2514/1.44336.
Texto completo da fonteMilanovic, Ivana M., e K. B. M. Q. Zaman. "Fluid Dynamics of Highly Pitched and Yawed Jets in Crossflow". AIAA Journal 42, n.º 5 (maio de 2004): 874–82. http://dx.doi.org/10.2514/1.2924.
Texto completo da fonteKong, Qian, Shiqi Yang, Qisi Wang, Zhentao Wang, Qingming Dong e Junfeng Wang. "Dynamics of electrified jets in electrohydrodynamic atomization". Case Studies in Thermal Engineering 29 (janeiro de 2022): 101725. http://dx.doi.org/10.1016/j.csite.2021.101725.
Texto completo da fonteKrutka, Holly M., Robert L. Shambaugh e Dimitrios V. Papavassiliou. "Using Computational Fluid Dynamics to Simulate Flow Fields from various Melt Blowing Dies". International Nonwovens Journal os-14, n.º 1 (março de 2005): 1558925005os—14. http://dx.doi.org/10.1177/1558925005os-1400101.
Texto completo da fonteCalifano, F., e A. Mangeney. "Mixed layer in a stably stratified fluid". Nonlinear Processes in Geophysics 1, n.º 4 (31 de dezembro de 1994): 199–208. http://dx.doi.org/10.5194/npg-1-199-1994.
Texto completo da fonteAtthanayake, I. U., P. Denissenko, Y. M. Chung e P. J. Thomas. "Formation–breakdown cycle of turbulent jets in a rotating fluid". Journal of Fluid Mechanics 868 (17 de abril de 2019): 666–97. http://dx.doi.org/10.1017/jfm.2019.186.
Texto completo da fonteNguyen, Anh V., e Geoffrey M. Evans. "Computational fluid dynamics modelling of gas jets impinging onto liquid pools". Applied Mathematical Modelling 30, n.º 11 (novembro de 2006): 1472–84. http://dx.doi.org/10.1016/j.apm.2006.03.015.
Texto completo da fonteBons, Jeffrey P., Rolf Sondergaard e Richard B. Rivir. "The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets". Journal of Turbomachinery 124, n.º 1 (1 de fevereiro de 2001): 77–85. http://dx.doi.org/10.1115/1.1425392.
Texto completo da fonteSouza, Pedro R. C., Odenir de Almeida e Carlos R. Ilário da Silva. "Aeroacoustic Investigation of High Subsonic Jets in Crossflow". Journal of Theoretical and Computational Acoustics 26, n.º 04 (dezembro de 2018): 1850031. http://dx.doi.org/10.1142/s2591728518500317.
Texto completo da fonteKhatri, Hemant, e Pavel Berloff. "Role of Eddies in the Maintenance of Multiple Jets Embedded in Eastward and Westward Baroclinic Shears". Fluids 3, n.º 4 (11 de novembro de 2018): 91. http://dx.doi.org/10.3390/fluids3040091.
Texto completo da fonteXianzhi, Song, Li Gensheng, Huang Zhongwei, Zhang Laibin, Tian Shouceng e Wang Haizhu. "Mechanism and Characteristics of Horizontal-Wellbore Cleanout by Annular Helical Flow". SPE Journal 19, n.º 01 (25 de junho de 2013): 45–54. http://dx.doi.org/10.2118/156335-pa.
Texto completo da fonteGreenblatt, David, e David R. Williams. "Flow Control for Unmanned Air Vehicles". Annual Review of Fluid Mechanics 54, n.º 1 (5 de janeiro de 2022): 383–412. http://dx.doi.org/10.1146/annurev-fluid-032221-105053.
Texto completo da fonteXu, Peng, Agus Sasmito e Arun Mujumdar. "A computational study of heat transfer under twin turbulent slot jets impinging on planar smooth and rough surfaces". Thermal Science 20, suppl. 1 (2016): 47–57. http://dx.doi.org/10.2298/tsci151130016x.
Texto completo da fonteGRINSTEIN, FERNANDO F. "Vortex dynamics and entrainment in rectangular free jets". Journal of Fluid Mechanics 437 (22 de junho de 2001): 69–101. http://dx.doi.org/10.1017/s0022112001004141.
Texto completo da fonteYakhya, Saleh, Sami Ernez e François Morency. "Computational Fluid Dynamics Investigation of Transient Effects of Aircraft Ground Deicing Jets". Journal of Thermophysics and Heat Transfer 33, n.º 1 (janeiro de 2019): 117–27. http://dx.doi.org/10.2514/1.t5428.
Texto completo da fonteRumsey, C. L., T. B. Gatski, W. L. Sellers, V. N. Vasta e S. A. Viken. "Summary of the 2004 Computational Fluid Dynamics Validation Workshop on Synthetic Jets". AIAA Journal 44, n.º 2 (fevereiro de 2006): 194–207. http://dx.doi.org/10.2514/1.12957.
Texto completo da fonteMorris, R. M., J. A. Snyman e J. P. Meyer. "Jets in Crossflow Mixing Analysis Using Computational Fluid Dynamics and Mathematical Optimization". Journal of Propulsion and Power 23, n.º 3 (maio de 2007): 618–28. http://dx.doi.org/10.2514/1.22136.
Texto completo da fonteAzim, M. A. "Isothermal free jets in high-temperature surroundings". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, n.º 8 (16 de maio de 2011): 1913–18. http://dx.doi.org/10.1177/0954406211401488.
Texto completo da fonteMadaliev, Murodil, Zokhidjon Abdulkhaev, Jamshidbek Otajonov, Khasanboy Kadyrov, Inomjan Bilolov, Sharabiddin Israilov e Nurzoda Abdullajonov. "Comparison of numerical results of turbulence models for the problem of heat transfer in turbulent molasses". E3S Web of Conferences 508 (2024): 05007. http://dx.doi.org/10.1051/e3sconf/202450805007.
Texto completo da fonteCastillo, Luis G., José M. Carrillo e Álvaro Sordo-Ward. "Simulation of overflow nappe impingement jets". Journal of Hydroinformatics 16, n.º 4 (18 de janeiro de 2014): 922–40. http://dx.doi.org/10.2166/hydro.2014.109.
Texto completo da fonteFromm, C. M., Z. Younsi, A. Baczko, Y. Mizuno, O. Porth, M. Perucho, H. Olivares et al. "Using evolutionary algorithms to model relativistic jets". Astronomy & Astrophysics 629 (22 de agosto de 2019): A4. http://dx.doi.org/10.1051/0004-6361/201834724.
Texto completo da fonteValizadeh, Alireza, Jason P. Antenucci e Grant Griffith. "REGULAR WAVE EFFECTS ON NEGATIVELY BUOYANT JETS". Coastal Engineering Proceedings, n.º 36v (28 de dezembro de 2020): 13. http://dx.doi.org/10.9753/icce.v36v.waves.13.
Texto completo da fonteSelimefendigil, Fatih, Hakan F. Oztop e Mikhail A. Sheremet. "Thermoelectric Generation with Impinging Nano-Jets". Energies 14, n.º 2 (18 de janeiro de 2021): 492. http://dx.doi.org/10.3390/en14020492.
Texto completo da fonteScott, Lewis, Antonia Borissova, Alan Burns e Mojtaba Ghadiri. "Analysis of hold-up and grinding pressure in a spiral jet mill using CFD-DEM". EPJ Web of Conferences 249 (2021): 12004. http://dx.doi.org/10.1051/epjconf/202124912004.
Texto completo da fonteVoropayev, S. I., Ya D. Afanasyev e I. A. Filippov. "Horizontal jets and vortex dipoles in a stratified fluid". Journal of Fluid Mechanics 227 (junho de 1991): 543–66. http://dx.doi.org/10.1017/s0022112091000241.
Texto completo da fonteBogy, D. B., e F. E. Talke. "Mechanics-Related Problems of Magnetic Recording Technology and Ink-Jet Printing". Applied Mechanics Reviews 39, n.º 11 (1 de novembro de 1986): 1665–77. http://dx.doi.org/10.1115/1.3149508.
Texto completo da fonteSong, XiaoWen, e MingXiao Zhang. "Turbulent Drag Reduction Characteristics of Bionic Nonsmooth Surfaces with Jets". Applied Sciences 9, n.º 23 (24 de novembro de 2019): 5070. http://dx.doi.org/10.3390/app9235070.
Texto completo da fonteBalk, A. M. "The Rossby wave extra invariant in the dynamics of 3-D fluid layers and the generation of zonal jets". Nonlinear Processes in Geophysics 21, n.º 1 (10 de janeiro de 2014): 49–59. http://dx.doi.org/10.5194/npg-21-49-2014.
Texto completo da fonteLiu, Yong, Jia Li, Yu Tian, Jian Liu e Jie Fan. "Multi-Physics Coupled FEM Method to Simulate the Formation of Crater-Like Taylor Cone in Electrospinning of Nanofibers". Journal of Nano Research 27 (março de 2014): 153–62. http://dx.doi.org/10.4028/www.scientific.net/jnanor.27.153.
Texto completo da fonteRhines, P. B. "Jets and Orography: Idealized Experiments with Tip Jets and Lighthill Blocking". Journal of the Atmospheric Sciences 64, n.º 10 (1 de outubro de 2007): 3627–39. http://dx.doi.org/10.1175/jas4008.1.
Texto completo da fonteLiu, C. M., A. Vaivads, Y. V. Khotyaintsev, H. S. Fu, D. B. Graham, K. Steinvall, Y. Y. Liu e J. L. Burch. "Cross-scale Dynamics Driven by Plasma Jet Braking in Space". Astrophysical Journal 926, n.º 2 (1 de fevereiro de 2022): 198. http://dx.doi.org/10.3847/1538-4357/ac4979.
Texto completo da fonteEzhova, E. V., D. A. Sergeev, A. A. Kandaurov e Yu I. Troitskaya. "Nonsteady dynamics of turbulent axisymmetric jets in stratified fluid: Part 1. Experimental study". Izvestiya, Atmospheric and Oceanic Physics 48, n.º 4 (julho de 2012): 409–17. http://dx.doi.org/10.1134/s0001433812040081.
Texto completo da fonteMoore, Eric M., Robert L. Shambaugh e Dimitrios V. Papavassiliou. "Analysis of isothermal annular jets: Comparison of computational fluid dynamics and experimental data". Journal of Applied Polymer Science 94, n.º 3 (2004): 909–22. http://dx.doi.org/10.1002/app.20963.
Texto completo da fonteLotfiani, Amin, Shahram Khalilarya e Samad Jafarmadar. "A semi-analytical model for the prediction of the behavior of turbulent coaxial gaseous jets". Thermal Science 17, n.º 4 (2013): 1221–32. http://dx.doi.org/10.2298/tsci110701140l.
Texto completo da fonteUntuç, Ahmet Hikmet, e Salih Ozen Unverdi. "Heat Transfer Enhancement by Mitigating the Adverse Effects of Crossflow in a Multi-Jet Impingement Cooling System in Hexagonal Configuration by Coaxial Cylindrical Protrusion—Guide Vane Pairs". Applied Sciences 13, n.º 20 (13 de outubro de 2023): 11260. http://dx.doi.org/10.3390/app132011260.
Texto completo da fonteJoshi, Raj Kishor, Sanjit Debnath e Indranil Chattopadhyay. "Shocks in Radiatively Driven Time-dependent, Relativistic Jets around Black Holes". Astrophysical Journal 933, n.º 1 (1 de julho de 2022): 75. http://dx.doi.org/10.3847/1538-4357/ac70de.
Texto completo da fonteLoureiro, Juliana Braga Rodrigues, e Atila Pantaleão Silva Freire. "Erosion Characterization Of Gas-Solid Jets Impinging Onto Inclined Surfaces". Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (8 de julho de 2024): 1–5. http://dx.doi.org/10.55037/lxlaser.21st.194.
Texto completo da fonteWang, Zhifeng, Zhengyang Feng, Jinsen Hu, Yuning Zhang e Yuning Zhang. "Numerical Investigations on the Jet Dynamics during Cavitation Bubble Collapsing between Dual Particles". Symmetry 16, n.º 5 (29 de abril de 2024): 535. http://dx.doi.org/10.3390/sym16050535.
Texto completo da fonteDíaz-Figueroa, Elton Everardo, Gonzalo Ares de Parga e José Juan González-Avilés. "Influence of the Magnetic Field Topology in the Evolution of Small-Scale Two-Fluid Jets in the Solar Atmosphere". Physics 5, n.º 1 (27 de fevereiro de 2023): 261–75. http://dx.doi.org/10.3390/physics5010020.
Texto completo da fonteKranz, Michael, Tracy Hudson, Michael Whitley e Brian English. "Integrated Localized Cooling using Piezoelectrically-Driven Synthetic Jets". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, DPC (1 de janeiro de 2014): 001072–106. http://dx.doi.org/10.4071/2014dpc-tp35.
Texto completo da fonteZhang, Qiang, Yu Tamanoi e Kotaro Sato. "Influence of secondary flow with a Coanda surface on the direction of jets". Journal of Physics: Conference Series 2252, n.º 1 (1 de abril de 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2252/1/012003.
Texto completo da fonteZhang, Qiang, Yu Tamanoi e Kotaro Sato. "Influence of secondary flow with a Coanda surface on the direction of jets". Journal of Physics: Conference Series 2252, n.º 1 (1 de abril de 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2252/1/012003.
Texto completo da fonte