Literatura científica selecionada sobre o tema "Jets Fluid dynamics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Jets Fluid dynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Jets Fluid dynamics"

1

NORMAN, MICHAEL L. "Fluid Dynamics of Astrophysical Jets". Annals of the New York Academy of Sciences 617, n.º 1 Nonlinear Ast (dezembro de 1990): 217–33. http://dx.doi.org/10.1111/j.1749-6632.1990.tb37807.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

ESEN, OĞUL, e HASAN GÜMRAL. "LIFTS, JETS AND REDUCED DYNAMICS". International Journal of Geometric Methods in Modern Physics 08, n.º 02 (março de 2011): 331–44. http://dx.doi.org/10.1142/s0219887811005166.

Texto completo da fonte
Resumo:
We show that complete cotangent lifts of vector fields, their decomposition into vertical representative and holonomic part provide a geometrical framework underlying Eulerian equations of continuum mechanics. We discuss Euler equations for ideal incompressible fluid and momentum-Vlasov equations of plasma dynamics in connection with the lifts of divergence-free and Hamiltonian vector fields, respectively. As a further application, we obtain kinetic equations of particles moving with the flow of contact vector fields both from Lie–Poisson reductions and with the techniques of present framework.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Beutner, Thomas, e Christopher Rumsey. "Introduction: Computational Fluid Dynamics Validation for Synthetic Jets". AIAA Journal 44, n.º 2 (fevereiro de 2006): 193. http://dx.doi.org/10.2514/1.22547.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

López-Arias, T., L. M. Gratton, G. Zendri e S. Oss. "Using jets of air to teach fluid dynamics". Physics Education 46, n.º 4 (29 de junho de 2011): 373–75. http://dx.doi.org/10.1088/0031-9120/46/4/f02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ramos, J. I. "Fluid dynamics of slender, thin, annular liquid jets". International Journal for Numerical Methods in Fluids 21, n.º 9 (15 de novembro de 1995): 735–61. http://dx.doi.org/10.1002/fld.1650210904.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Murzabaeb, M. T., e A. L. Yarin. "Dynamics of sprinkler jets". Fluid Dynamics 20, n.º 5 (1986): 715–22. http://dx.doi.org/10.1007/bf01050084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

HERNÁNDEZ C., I., F. A. ACOSTA G., A. H. CASTILLEJOS E. e J. I. MINCHACA M. "The Fluid Dynamics of Secondary Cooling Air-Mist Jets". Metallurgical and Materials Transactions B 39, n.º 5 (outubro de 2008): 746–63. http://dx.doi.org/10.1007/s11663-008-9179-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mitrovic, J., e A. Ricoeur. "Fluid dynamics and condensation-heating of capillary liquid jets". International Journal of Heat and Mass Transfer 38, n.º 8 (maio de 1995): 1483–94. http://dx.doi.org/10.1016/0017-9310(94)00258-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Miller, Steven A. E., Jérémy Veltin, Philip J. Morris e Dennis K. McLaughlin. "Assessment of Computational Fluid Dynamics for Supersonic Shock Containing Jets". AIAA Journal 47, n.º 11 (novembro de 2009): 2738–46. http://dx.doi.org/10.2514/1.44336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Milanovic, Ivana M., e K. B. M. Q. Zaman. "Fluid Dynamics of Highly Pitched and Yawed Jets in Crossflow". AIAA Journal 42, n.º 5 (maio de 2004): 874–82. http://dx.doi.org/10.2514/1.2924.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Jets Fluid dynamics"

1

Oren, Liran. "Fluid dynamics of pulsating jets and voice". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353155395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lai, Chung-kei Chris, e 黎頌基. "Mixing of inclined dense jets". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B4423661X.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Smith, Barton Lee. "Synthetic jets and their interaction with adjacent jets". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18889.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Or, Chun-ming, e 柯雋銘. "Flow development in the initial region of a submerged round jet in a moving environment". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664512.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shen, Jihua. "Formation and characteristics of sprays from annular viscous liquid jet breakup". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32723.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Davis, Staci Ann. "The manipulation of large- and small-scale flow structures in single and coaxial jets using synthetic jet actuators". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17313.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cutler, Philip Robert Edward. "On the structure and mixing of a jet in crossflow : Ph.D. thesis". Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phc9895.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hunter, Hanif. "Formation and break up of microscale liquid jets". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28194.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Soo, Jin Hou. "Direct and large-eddy simulations of three-dimensional jets using the lattice Boltzmann method". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/12013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Li, Larry. "Forcing of globally unstable jets and flames". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/242373.

Texto completo da fonte
Resumo:
In the analysis of thermoacoustic systems, a flame is usually characterised by the way its heat release responds to acoustic forcing. This response depends on the hydrodynamic stability of the flame. Some flames, such as a premixed bunsen flame, are hydrodynamically globally stable. They respond only at the forcing frequency. Other flames, such as a jet diffusion flame, are hydrodynamically globally unstable. They oscillate at their own natural frequencies and are often assumed to be insensitive to low-amplitude forcing at other frequencies. If a hydrodynamically globally unstable flame really is insensitive to forcing at other frequencies, then it should be possible to weaken thermoacoustic oscillations by detuning the frequency of the natural hydrodynamic mode from that of the natural acoustic modes. This would be very beneficial for industrial combustors. In this thesis, that assumption of insensitivity to forcing is tested experimentally. This is done by acoustically forcing two different self-excited flows: a non-reacting jet and a reacting jet. Both jets have regions of absolute instability at their base and this causes them to exhibit varicose oscillations at discrete natural frequencies. The forcing is applied around these frequencies, at varying amplitudes, and the response examined over a range of frequencies (not just at the forcing frequency). The overall system is then modelled as a forced van der Pol oscillator. The results show that, contrary to some expectations, a hydrodynamically self-excited jet oscillating at one frequency is sensitive to forcing at other frequencies. When forced at low amplitudes, the jet responds at both frequencies as well as at several nearby frequencies, and there is beating, indicating quasi-periodicity. When forced at high amplitudes, however, it locks into the forcing. The critical forcing amplitude required for lock-in increases with the deviation of the forcing frequency from the natural frequency. This increase is linear, indicating a Hopf bifurcation to a global mode. The lock-in curve has a characteristic ∨ shape, but with two subtle asymmetries about the natural frequency. The first asymmetry concerns the forcing amplitude required for lock-in. In the non-reacting jet, higher amplitudes are required when the forcing frequency is above the natural frequency. In the reacting jet, lower amplitudes are required when the forcing frequency is above the natural frequency. The second asymmetry concerns the broadband response at lock-in. In the non-reacting jet, this response is always weaker than the unforced response, regardless of whether the forcing frequency is above or below the natural frequency. In the reacting jet, that response is weaker than the unforced response when the forcing frequency is above the natural frequency, but is stronger than it when the forcing frequency is below the natural frequency. In the reacting jet, weakening the global instability – by adding coflow or by diluting the fuel mixture – causes the flame to lock in at lower forcing amplitudes. This finding, however, cannot be detected in the flame describing function. That is because the flame describing function captures the response at only the forcing frequency and ignores all other frequencies, most notably those arising from the natural mode and from its interactions with the forcing. Nevertheless, the flame describing function does show a rise in gain below the natural frequency and a drop above it, consistent with the broadband response. Many of these features can be predicted by the forced van der Pol oscillator. They include (i) the coexistence of the natural and forcing frequencies before lock-in; (ii) the presence of multiple spectral peaks around these competing frequencies, indicating quasi-periodicity; (iii)the occurrence of lock-in above a critical forcing amplitude; (iv) the ∨-shaped lock-in curve; and (v) the reduced broadband response at lock-in. There are, however, some features that cannot be predicted. They include (i) the asymmetry of the forcing amplitude required for lock-in, found in both jets; (ii) the asymmetry of the response at lock-in, found in the reacting jet; and (iii) the interactions between the fundamental and harmonics of both the natural and forcing frequencies, found in both jets.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Jets Fluid dynamics"

1

A, Davies P., Valente Neves M. J, North Atlantic Treaty Organization. Scientific Affairs Division. e NATO Advanced Research Workshop on Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (1993 : Viana do Castelo, Portugal), eds. Recent research advances in the fluid mechanics of turbulent jets and plumes. Dordrecht: Kluwer Academic, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lin, S. P. Breakup of liquid sheets and jets. [S.l.]: Cambridge Univ Press, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yarin, Alexander L. Free liquid jets and films: Hydrodynamics and rheology. New York: Longman Scientific & Technical, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Yarin, Alexander L. Free liquid jets and films: Hydrodynamics and rheology. Harlow: Longman Scientific & Technical, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jian-Shun, Shuen, Faeth G. M e United States. National Aeronautics and Space Administration., eds. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

United States. National Aeronautics and Space Administration., ed. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Jian-Shun, Shuen, Faeth G. M e United States. National Aeronautics and Space Administration., eds. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

United States. National Aeronautics and Space Administration., ed. Particle-laden weakly swirling free jets: Measurements and predictions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

United States. National Aeronautics and Space Administration., ed. Nonlinear interactions in mixing layers and compressible heated round jets. [Washington, DC: National Aeronautics and Space Administration, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Center, Langley Research, ed. Analytical description of the breakup of liquid jets in air. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Jets Fluid dynamics"

1

Özsoy, Emin. "Jets and Plumes". In Geophysical Fluid Dynamics II, 227–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74934-7_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Meier, G. E. A., S. Loose e B. Stasicki. "Unsteady Liquid Jets". In In Fascination of Fluid Dynamics, 207–16. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4986-0_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Grinstein, F. F. "Dynamics of Countercurrent Square Jets". In Fluid Mechanics and Its Applications, 151–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5118-4_37.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jiang, Zonglin, e Kazuyoshi Takayama. "Numerical Simulations of Shock/ Vortex Interaction in Non-Circular Jets". In Computational Fluid Dynamics 2000, 177–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_24.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shur, Mikhail L., Andrey V. Garbaruk, Sergey V. Kravchenko, Philippe R. Spalart e Mikhail Kh Strelets. "LES-Based Numerical System for Noise Prediction in Complex Jets". In Computational Fluid Dynamics 2010, 163–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Patel, Sanjay, e Dimitris Drikakis. "Flux Limiting Schemes for Implicit Large Eddy Simulation of Synthetic Jets". In Computational Fluid Dynamics 2006, 439–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_68.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cheprasov, S. A., D. A. Lyubimov, A. N. Secundov, K. Ya Yakubovsky e S. F. Birch. "Computational Modeling of the Flow and Noise for 3-D Exhaust Turbulent Jets". In Computational Fluid Dynamics 2010, 903–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_121.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Creusé, Emmanuel, André Giovannini e Iraj Mortazavi. "Active Control of Transitional Channel Flows with Pulsed and Synthetic Jets Using Vortex Methods". In Computational Fluid Dynamics 2008, 329–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_41.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

New, T. H., D. Tsovolos e E. Tsioli. "Dynamics of Jets Issuing from Trailing-Edge Modified Nozzles". In Fluid Mechanics and Its Applications, 145–89. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-396-5_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Morgan, P. L., M. Kirkpatrick e S. W. Armfield. "A Comparison of 2-D and 3-D Solutions for Incompressible Bifurcating Jets in Stratified Environments". In Computational Fluid Dynamics 2002, 293–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_42.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Jets Fluid dynamics"

1

Hammond, D., D. Lim e L. Redekopp. "Aerodynamic thrust vectoring of jets". In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mallinson, S., G. Hong e J. Reizes. "Some characteristics of synthetic jets". In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Panda, J. "Measurement of shock oscillation in underexpanded supersonic jets". In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2145.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chigier, Norman. "Breakup of liquid sheets and jets". In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3640.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Stanley, S., S. Sarkar, S. Stanley e S. Sarkar. "Simulations of spatially developing plane jets". In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Reichert, R., S. Biringen, R. Reichert e S. Biringen. "Numerical simulation of compressible plane jets". In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1924.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nagib, H. M., R. E. Drubka e P. R. Reisenthel. "The Dynamics of Turbulent Jets". In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

SHERIF, S., e R. PLETCHER. "Jet-wake thermal characteristics of heated turbulent jets in cross flow". In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3725.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wernz, S., H. Fasel, S. Wernz e H. Fasel. "Numerical investigation of forced transitional wall jets". In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

McManus, Keith, Hartmut Legner e Steven Davis. "Pulsed vortex generator jets for active control of flow separation". In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2218.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Jets Fluid dynamics"

1

Wurtzler, Kenneth, Amid Ansari e Don Kinsey. Computational Fluid Dynamic Analysis of a Single-Engine Business Jet. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1996. http://dx.doi.org/10.21236/ada332966.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sahu, Jubaraj, e Karen R. Heavey. Computational Fluid Dynamics Modeling of a 40-mm Grenade with and Without Jet Flow. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2001. http://dx.doi.org/10.21236/ada396072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mezic, Igor. Dynamics and Control of Instabilities and Mixing in Complex Fluid Flows; Applications to Jet Engines. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2001. http://dx.doi.org/10.21236/ada389184.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia