Artigos de revistas sobre o tema "Jet-steam"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Jet-steam".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shavdinova, M. D. "ENHANCEMENT OF STEAM-TURBINE CONDENSER STEAM-JET EJECTOR". Eurasian Physical Technical Journal 18, n.º 4 (38) (21 de dezembro de 2021): 52–58. http://dx.doi.org/10.31489/2021no4/52-58.
Texto completo da fonteMelkias, Alvera Apridalianti, e Shahrul Nuno Gomez. "Evaluasi Kinerja Steam Jet Ejector Tingkat Pertama Terhadap Kevakuman Kondensor". Jurnal Surya Teknika 11, n.º 1 (26 de junho de 2024): 318–24. http://dx.doi.org/10.37859/jst.v11i1.7259.
Texto completo da fonteWickramasinghe, Ganemulle Lekamalage Dharmasri, e Peter William Foster. "Investigation of the use of steam for spun-like textured yarn manufacturing". International Journal of Clothing Science and Technology 27, n.º 2 (20 de abril de 2015): 177–90. http://dx.doi.org/10.1108/ijcst-01-2014-0017.
Texto completo da fonteDai, Xiao Chun, e Jian Huo. "Numerical Simulation on Flow Structure of a Steam-Jet Pump Influenced by Primary Nozzle Geometries". Applied Mechanics and Materials 130-134 (outubro de 2011): 1703–7. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.1703.
Texto completo da fonteFujita, Isamu, Muneo Yoshie e Yukihiro Saito. "Steam Jet Pump For Oil Recovery And Reformation". International Oil Spill Conference Proceedings 2005, n.º 1 (1 de maio de 2005): 589–93. http://dx.doi.org/10.7901/2169-3358-2005-1-589.
Texto completo da fonteLi, Xin, Guangsheng Wei, Rong Zhu, Bohan Tian, Ruimin Zhao e Xinyi Lan. "Study on the Characteristics of Coherent Supersonic Jet with Superheated Steam". Metals 12, n.º 5 (13 de maio de 2022): 835. http://dx.doi.org/10.3390/met12050835.
Texto completo da fonteZwawi, Mohammed, Afrasyab Khan, Ali Bahadar e Mohammed Algarni. "Study of Steam-Induced Convection in a Rotating Vertical Flow Channel". Mathematics 11, n.º 1 (25 de dezembro de 2022): 79. http://dx.doi.org/10.3390/math11010079.
Texto completo da fonteRen, Da Bin, Xian Kun Wang, Jiao Lei e Jiu Mei Xiao. "Study on a Development Platform of Virtual Steam Jet Pump Based on Virtual Prototyping Technology". Advanced Materials Research 139-141 (outubro de 2010): 1498–501. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1498.
Texto completo da fonteHogekamp, Stefan. "Steam Jet Agglomeration - Part 1: Production of Redispersible Agglomerates by Steam Jet Agglomeration". Chemical Engineering & Technology 22, n.º 5 (maio de 1999): 421–24. http://dx.doi.org/10.1002/(sici)1521-4125(199905)22:5<421::aid-ceat421>3.0.co;2-0.
Texto completo da fonteEl-Dessouky, Hisham, Hisham Ettouney, Imad Alatiqi e Ghada Al-Nuwaibit. "Evaluation of steam jet ejectors". Chemical Engineering and Processing: Process Intensification 41, n.º 6 (julho de 2002): 551–61. http://dx.doi.org/10.1016/s0255-2701(01)00176-3.
Texto completo da fonteKhlystov, A. "The steam-jet aerosol collector". Atmospheric Environment 29, n.º 17 (setembro de 1995): 2229–34. http://dx.doi.org/10.1016/1352-2310(95)00180-7.
Texto completo da fonteHogekamp, Stefan. "Steam-Jet Agglomeration - Part 2: Modeling Agglomerate Growth in a Modified Steam-Jet Agglomerator". Chemical Engineering & Technology 22, n.º 6 (junho de 1999): 485–90. http://dx.doi.org/10.1002/(sici)1521-4125(199906)22:6<485::aid-ceat485>3.0.co;2-u.
Texto completo da fonteDai, Xiao Chun. "Numerical Study on the Flow Structure of a Steam-Jet Vacuum Pump at Different Throat Length". Advanced Materials Research 542-543 (junho de 2012): 1053–56. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.1053.
Texto completo da fonteYang, Dong, Xiao Jie Zhang e Meng Zhang. "The Research Progress of Steam Jet Pump Design Method". Advanced Materials Research 960-961 (junho de 2014): 543–46. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.543.
Texto completo da fonteГоняева, С. С., В. В. Кожемякин, В. О. Кожемякин, Н. А. Морозов, С. А. Николаева e А. В. Аполлова. "Emergency core cooling systems". MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg> 1, n.º 1(63) (28 de fevereiro de 2024): 105–9. http://dx.doi.org/10.37220/mit.2024.63.1.012.
Texto completo da fonteSangsom, Wilasinee, e Chouw Inprasit. "Design and Development of Innovative Steam Injection for High-Temperature Short-Time Liquid Foods". Processes 10, n.º 1 (14 de janeiro de 2022): 161. http://dx.doi.org/10.3390/pr10010161.
Texto completo da fonteSadkin, I. S., E. P. Kopyev, M. A. Mukhina e I. S. Anufriev. "Experimental study of the characteristics of heptane combustion in a high-speed steam jet". Journal of Physics: Conference Series 2233, n.º 1 (1 de abril de 2022): 012001. http://dx.doi.org/10.1088/1742-6596/2233/1/012001.
Texto completo da fonteSadkin, I. S., E. P. Kopyev, M. A. Mukhina e I. S. Anufriev. "Experimental study of the characteristics of heptane combustion in a high-speed steam jet". Journal of Physics: Conference Series 2233, n.º 1 (1 de abril de 2022): 012001. http://dx.doi.org/10.1088/1742-6596/2233/1/012001.
Texto completo da fonteArsenyev, Vyacheslav, Victor Kozin, Iurii Merzliakov e Mikhail Protsenko. "Jet Thermal Compression of the Ammonia-Water Mixture for Heat Pumps and Refrigerating Systems". Applied Mechanics and Materials 630 (setembro de 2014): 61–65. http://dx.doi.org/10.4028/www.scientific.net/amm.630.61.
Texto completo da fonteYakush, S. E., N. S. Sivakov, V. I. Melikhov e O. I. Melikhov. "Modelling of water jet impact on molten metal". Journal of Physics: Conference Series 2119, n.º 1 (1 de dezembro de 2021): 012073. http://dx.doi.org/10.1088/1742-6596/2119/1/012073.
Texto completo da fonteBeithou, N., e H. S. Aybar. "High-Pressure Steam-Driven Jet Pump—Part I: Mathematical Modeling". Journal of Engineering for Gas Turbines and Power 123, n.º 3 (1 de janeiro de 2000): 693–700. http://dx.doi.org/10.1115/1.1365934.
Texto completo da fonteKhlystov, A., G. P. Wyers, H. M. ten Brink e J. Slanina. "The steam-jet aerosol collector (SJAC)". Journal of Aerosol Science 26 (setembro de 1995): S111—S112. http://dx.doi.org/10.1016/0021-8502(95)96963-8.
Texto completo da fontePollerberg, Clemens, Ahmed Hamza H. Ali e Christian Dötsch. "Solar driven steam jet ejector chiller". Applied Thermal Engineering 29, n.º 5-6 (abril de 2009): 1245–52. http://dx.doi.org/10.1016/j.applthermaleng.2008.06.017.
Texto completo da fonteКожемякин, В. В., Н. А. Морозов, Ю. И. Раевская e Д. П. Левша. "Influence of operating parameters on the static characteristics of the propulsion injector". MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg> 1, n.º 1(63) (28 de fevereiro de 2024): 129–34. http://dx.doi.org/10.37220/mit.2024.63.1.015.
Texto completo da fonteKazantsev, A., O. Supotnitskaya e V. Sergeev. "SIMULATING OF DROP ENTRAINMENT IN THE JET-VORTEX CONDENSER OF THE VVER-440 CONFINEMENT SYSTEM". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, n.º 1 (26 de março de 2021): 108–16. http://dx.doi.org/10.55176/2414-1038-2021-1-108-116.
Texto completo da fonteJIN, ERIC, TONY HABIB, SIMON YOUSSEF, STEVE OSBORNE e HONGHI TRAN. "Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers". March 2021 20, n.º 3 (1 de abril de 2021): 199–207. http://dx.doi.org/10.32964/tj20.3.199.
Texto completo da fonteGrzesiak, Szymon, e Andrzej Adamkiewicz. "Application of a Two-Stage Steam Jet Injector Unit for Latent Heat Recovery of a Marine Steam Turbine Propulsion Plant". Applied Sciences 11, n.º 12 (14 de junho de 2021): 5511. http://dx.doi.org/10.3390/app11125511.
Texto completo da fonteMukhina, Mariia, Evgeny Kopyev e Evgeniy Shadrin. "Combustion of liquid hydrocarbons sprayed by air jet". E3S Web of Conferences 459 (2023): 07006. http://dx.doi.org/10.1051/e3sconf/202345907006.
Texto completo da fonteFu, Benshuai, Bingju Lu, Haiyan Xiao, Liping Qin e Guanghua Li. "Experimental research on the atomization of transverse liquid jet". Journal of Physics: Conference Series 2764, n.º 1 (1 de maio de 2024): 012049. http://dx.doi.org/10.1088/1742-6596/2764/1/012049.
Texto completo da fonteZhang, Jing, Jing Gang Yi, Hai Yong Jiang, Jia Zhong Wang e Jiang Tao Liu. "Research on Control System of Steam Scallop Shelling Machine". Applied Mechanics and Materials 441 (dezembro de 2013): 879–82. http://dx.doi.org/10.4028/www.scientific.net/amm.441.879.
Texto completo da fonteKim, Sang Ho, Seong-Wan Hong e Rae-Joon Park. "Analysis of Steam Explosion under Conditions of Partially Flooded Cavity and Submerged Reactor Vessel". Science and Technology of Nuclear Installations 2018 (5 de julho de 2018): 1–12. http://dx.doi.org/10.1155/2018/3106039.
Texto completo da fonteShah, Ajmal. "STUDY OF STEAM-WATER DIRECT-CONTACT CONDENSATION IN STEAM JET PUMP". International Journal of Fluid Mechanics Research 44, n.º 6 (2017): 487–97. http://dx.doi.org/10.1615/interjfluidmechres.2017019671.
Texto completo da fonteWang, Zhe, Hong Li, Haiyan Chen, Juan Lv, Hao Leng, Junhui Xiao e Shuai Wang. "Effects of grinding and dehydration on kaolin in a steam jet mill". Clay Minerals 56, n.º 1 (março de 2021): 75–84. http://dx.doi.org/10.1180/clm.2021.18.
Texto completo da fonteDemikhov, K. E., e A. A. Ochkov. "On the Method of Calculating Diffusion Vacuum Pump Stage Pumping Parameters". Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, n.º 2 (137) (junho de 2021): 85–93. http://dx.doi.org/10.18698/0236-3941-2021-2-85-93.
Texto completo da fonteBortun, Anatoly, Mila Bortun, Benjamin Brown e Jeremy Madynski. "Effect of High-Energy Milling on Ceria-Zirconia’s Redox Properties". Catalysts 13, n.º 12 (14 de dezembro de 2023): 1511. http://dx.doi.org/10.3390/catal13121511.
Texto completo da fonteXu, Hai Lun, e Zi Lin Li. "Environmental Benefits and Energy Efficiency of Superheated Steam as Media in Processing Ultra-Fine Fly Ash Technology". Advanced Materials Research 160-162 (novembro de 2010): 1558–63. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.1558.
Texto completo da fonteAkhmadi, Amin Nur, Faqih Fatkhurrozak e Firman Lukman Sanjaya. "Rancang Bangun Mesin Steam Jet Mini Portable Power Spayer". IRA Jurnal Teknik Mesin dan Aplikasinya (IRAJTMA) 3, n.º 1 (30 de abril de 2024): 1–10. http://dx.doi.org/10.56862/irajtma.v3i1.95.
Texto completo da fonteTouchton, G. L. "Influence of Gas Turbine Combustor Design and Operating Parameters on Effectiveness of NOx Suppression by Injected Steam or Water". Journal of Engineering for Gas Turbines and Power 107, n.º 3 (1 de julho de 1985): 706–13. http://dx.doi.org/10.1115/1.3239792.
Texto completo da fonteBolotnova, R. Kh, e V. A. Korobchinskaya. "The formation features of supercritical steam-water jets (review)". Multiphase Systems 17, n.º 1-2 (2022): 27–37. http://dx.doi.org/10.21662/mfs2022.1.003.
Texto completo da fonteGEORGIEV, Vasil, e Nenko NENOV. "LABORATORY REFRIGERATION UNIT WITH STEAM-JET COMPRESSOR". European Journal of Technic 8, n.º 1 (30 de junho de 2018): 13–16. http://dx.doi.org/10.36222/ejt.468476.
Texto completo da fonteIWAKI, Chikako, Michitsugu MORI, Tadashi NARABAYASHI e Syuichi OHMORI. "Study on jet structure in steam injector". Proceedings of the JSME annual meeting 2003.2 (2003): 137–38. http://dx.doi.org/10.1299/jsmemecjo.2003.2.0_137.
Texto completo da fonteSEKISHITA, Nobumasa. "Investigations of Characteristics on a Steam Jet". Proceedings of Conference of Tokai Branch 2017.66 (2017): 429. http://dx.doi.org/10.1299/jsmetokai.2017.66.429.
Texto completo da fonteAly, Narmine H., Aly Karameldin e M. M. Shamloul. "Modelling and simulation of steam jet ejectors". Desalination 123, n.º 1 (agosto de 1999): 1–8. http://dx.doi.org/10.1016/s0011-9164(99)00053-3.
Texto completo da fonteQu, Xiao-hang, Hui Sui e Mao-cheng Tian. "CFD simulation of steam–air jet condensation". Nuclear Engineering and Design 297 (fevereiro de 2016): 44–53. http://dx.doi.org/10.1016/j.nucengdes.2015.11.011.
Texto completo da fonteChoi, Choengryul, Se-Hong Oh, Dae Kyung Choi, Won Tae Kim, Yoon-Suk Chang e Seung Hyun Kim. "CFD Analysis for Steam Jet Impingement Evaluation". Transactions of the Korean Society of Pressure Vessels and Piping 12, n.º 2 (30 de dezembro de 2016): 58–65. http://dx.doi.org/10.20466/kpvp.2016.12.2.058.
Texto completo da fonteZaidenshtein, D. Kh, V. A. Mil'gram e T. I. Usmanov. "New series of vacuum-jet steam pumps". Chemical and Petroleum Engineering 27, n.º 2 (fevereiro de 1991): 74–75. http://dx.doi.org/10.1007/bf01147662.
Texto completo da fonteHogekamp, S., H. Schubert e S. Wolf. "Steam jet agglomeration of water soluble material". Powder Technology 86, n.º 1 (janeiro de 1996): 49–57. http://dx.doi.org/10.1016/0032-5910(95)03037-9.
Texto completo da fonteSherif, S. A., D. Y. Goswami, G. D. Mathur, S. V. Iyer, B. S. Davanagere, S. Natarajan e F. Colacino. "A feasibility study of steam-jet refrigeration". International Journal of Energy Research 22, n.º 15 (dezembro de 1998): 1323–36. http://dx.doi.org/10.1002/(sici)1099-114x(199812)22:15<1323::aid-er430>3.0.co;2-w.
Texto completo da fonteYan, Junjie, Xinzhuang Wu, Daotong Chong e Jiping Liu. "Experimental Research on Performance of Supersonic Steam-Driven Jet Injector and Pressure of Supersonic Steam Jet in Water". Heat Transfer Engineering 32, n.º 11-12 (outubro de 2011): 988–95. http://dx.doi.org/10.1080/01457632.2011.556465.
Texto completo da fonteTrokoz, Ya Ye, P. O. Barabash, P. P. Kudelya e O. B. Golubev. "Development and research of refrigeration cycle with biagent jet compressor". KPI Science News, n.º 4 (14 de fevereiro de 2022): 77–82. http://dx.doi.org/10.20535/kpisn.2021.4.252054.
Texto completo da fonte