Literatura científica selecionada sobre o tema "Jet-steam"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Jet-steam".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Jet-steam"
Shavdinova, M. D. "ENHANCEMENT OF STEAM-TURBINE CONDENSER STEAM-JET EJECTOR". Eurasian Physical Technical Journal 18, n.º 4 (38) (21 de dezembro de 2021): 52–58. http://dx.doi.org/10.31489/2021no4/52-58.
Texto completo da fonteMelkias, Alvera Apridalianti, e Shahrul Nuno Gomez. "Evaluasi Kinerja Steam Jet Ejector Tingkat Pertama Terhadap Kevakuman Kondensor". Jurnal Surya Teknika 11, n.º 1 (26 de junho de 2024): 318–24. http://dx.doi.org/10.37859/jst.v11i1.7259.
Texto completo da fonteWickramasinghe, Ganemulle Lekamalage Dharmasri, e Peter William Foster. "Investigation of the use of steam for spun-like textured yarn manufacturing". International Journal of Clothing Science and Technology 27, n.º 2 (20 de abril de 2015): 177–90. http://dx.doi.org/10.1108/ijcst-01-2014-0017.
Texto completo da fonteDai, Xiao Chun, e Jian Huo. "Numerical Simulation on Flow Structure of a Steam-Jet Pump Influenced by Primary Nozzle Geometries". Applied Mechanics and Materials 130-134 (outubro de 2011): 1703–7. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.1703.
Texto completo da fonteFujita, Isamu, Muneo Yoshie e Yukihiro Saito. "Steam Jet Pump For Oil Recovery And Reformation". International Oil Spill Conference Proceedings 2005, n.º 1 (1 de maio de 2005): 589–93. http://dx.doi.org/10.7901/2169-3358-2005-1-589.
Texto completo da fonteLi, Xin, Guangsheng Wei, Rong Zhu, Bohan Tian, Ruimin Zhao e Xinyi Lan. "Study on the Characteristics of Coherent Supersonic Jet with Superheated Steam". Metals 12, n.º 5 (13 de maio de 2022): 835. http://dx.doi.org/10.3390/met12050835.
Texto completo da fonteZwawi, Mohammed, Afrasyab Khan, Ali Bahadar e Mohammed Algarni. "Study of Steam-Induced Convection in a Rotating Vertical Flow Channel". Mathematics 11, n.º 1 (25 de dezembro de 2022): 79. http://dx.doi.org/10.3390/math11010079.
Texto completo da fonteRen, Da Bin, Xian Kun Wang, Jiao Lei e Jiu Mei Xiao. "Study on a Development Platform of Virtual Steam Jet Pump Based on Virtual Prototyping Technology". Advanced Materials Research 139-141 (outubro de 2010): 1498–501. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1498.
Texto completo da fonteHogekamp, Stefan. "Steam Jet Agglomeration - Part 1: Production of Redispersible Agglomerates by Steam Jet Agglomeration". Chemical Engineering & Technology 22, n.º 5 (maio de 1999): 421–24. http://dx.doi.org/10.1002/(sici)1521-4125(199905)22:5<421::aid-ceat421>3.0.co;2-0.
Texto completo da fonteEl-Dessouky, Hisham, Hisham Ettouney, Imad Alatiqi e Ghada Al-Nuwaibit. "Evaluation of steam jet ejectors". Chemical Engineering and Processing: Process Intensification 41, n.º 6 (julho de 2002): 551–61. http://dx.doi.org/10.1016/s0255-2701(01)00176-3.
Texto completo da fonteTeses / dissertações sobre o assunto "Jet-steam"
Wickramasinghe, G. L. D. "Steam-jet intermingled sewing threads". Thesis, University of Manchester, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601663.
Texto completo da fonteHedges, Collin R. "Computational fluid dynamic model of steam ingestion into a transonic compressor". Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Jun/09Jun%5FHedges.pdf.
Texto completo da fonteThesis Advisor(s): Gannon, Anthony J. "June 2009." Author(s) subject terms: Computational Fluid Dynamics, Transonic, Compressor, Steam Ingestion, Sanger Rotor. Description based on title screen as viewed on July 10, 2009. Includes bibliographical references (p. 61). Also available in print.
Meyer, Adriaan Jacobus. "Steam jet ejector cooling powered by low grade waste or solar heat". Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2012.
Texto completo da fonteA small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup is of an open loop configuration and the boiler can operate in the temperature range of Tb = 85 °C to 140 °C. The typical evaporator liquid temperatures range from Te = 5 °C t o 10 °C while the typical water cooled condenser presure ranges from Pc = 1 . 70 kPa t o 5. 63 kPa (Tc = 15 °C to 35 °C). The boiler is powered by by two 4kW electric elements, while a 3kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs. The function ...
Centre for Renewable and Sustainable Energy Studies
Anand, G. "Phenomenological and mathematical modeling of a high pressure steam driven jet injector /". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487842372897594.
Texto completo da fonteCaeiro, Jorge Alberto Jasnau. "A lithium bromide-water absorption refrigeration system combined with steam jet thermal ice storage". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405384.
Texto completo da fonteMora-Perez, José-Luis. "Modélisation de l'énergie thermique véhiculée par des jets vapeur d'eau-sodium liquide". Poitiers, 1988. http://www.theses.fr/1988POIT2329.
Texto completo da fonteSmith, Bradley Joseph. "Steam-Assisted Catalysis of n-Dodecane as a Jet Fuel Analogue in a Flow Reactor System for Hypersonic Thermal Management". University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1577978953025703.
Texto completo da fonteRoger, Francis. "Contribution à la théorie des jets gaz-liquide : application à la modélisation de phénomènes d'érosion-corrosion". Poitiers, 1987. http://www.theses.fr/1987POIT2004.
Texto completo da fonteThakre, Sachin. "On Fuel Coolant Interactions and Debris Coolability in Light Water Reactors". Doctoral thesis, KTH, Kärnkraftssäkerhet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166261.
Texto completo da fonteUnder ett svårt haveri i en kärnkraftsreaktor kan en härdsmälta bildas och smältan växelverka på ett explosivt sätt med kylvattnet. En sådan FCI (Fuel-Coolant-Interaction) inbegriper flera fysikaliska processer vilkas förlopp bestämmer hur stor den frigjorda energin blir. Vid kontakt med vattnet fragmenteras först härdsmältan vilket i sin tur leder till att en större yta exponeras för kylvattnet och att värmeöverföringen från smältan snabbt ökar. Mycket forskning har ägnats åt att förstå vad som sker under en FCI men det finns fortfarande luckor att fylla vad beträffar t ex osäkerheter i beskrivningen av fragmentering av såväl smälta som enskilda droppar av smält material. Syftet med detta arbete är främst att underbygga en bättre förståelse av den inledande delen av en FCI genom att studera dels hur enskilda droppar av smält material deformeras och splittras och dels hur en stråle av smält material fragmenteras. Vi studerar särskilt vilka parametrar som mest påverkar den energi som frigörs vid ångexplosionen. Problemet studeras med numerisk analys med början i liten skala och sedan i full skala. Vi söker också uppskatta de laster som explosionen utsätter reaktorns komponenter för. En annan viktig fråga gäller kylbarheten hos den slaggansamling som bildas under reaktorhärden efter en FCI. Slagghögen förväntas ha en porös struktur och en del av avhandlingen redogör för experimentella försök som genomförts för att utvärdera kylbarheten i olika prototypiska slaggformationer. I avhandlingens inledning beskrivs de fysikaliska processerna under en FCI och kylningen av en slaggansamling. Det aktuella kunskapsläget på dessa områden presenteras också utgående från tidigare experimentella och teoretiska studier. Studierna i avhandlingen inleds med numerisk analys av hydrodynamiken för en enskild droppe smälta i en vattentank där VOF-metoden i CFD-programmet ANSYS FLUENT används. Denna grundläggande studie rör en enskild droppe under förstadiet till fragmentering och ångexplosion då droppen deformeras alltmer. Deformationen studeras ingående också med hänsyn tagen till inverkan av en tryckpuls. Inverkan av olika egenskaper hos materialet, som densitet, ytspänning och viskositet studeras också. Arbetet utvidgas sedan till en beskrivning i 3D för att undvika de begränsningar som finns i en 2D-simulering. Studierna av FCI utvidgas sedan till en analys av fragmentering av en stråle smälta i vatten. Detta är en kritisk del av förloppet då smälta och vatten blandas för att ge utgångstillståndet för ångexplosionen. Beräkningarna genomförs under antagande att kokning inte sker och med materialegenskaper som för Wood´s metall. Mönstret för fragmentering och uppsplittring studeras ingående för olika Weber-tal. Dessutom studeras effekten på strålens uppsplittringslängd av parametrar som diameter och hastighet för strålen samt densitet, ytspänning och viskositet hos materialet. Efter dessa grundläggande studier utvidgas arbetet till FCI-energier i reaktorskala. Här ligger tonvikten på utvärdering av osäkerheter i bestämningen av den inverkan explosionen har på omgivande konstruktioner och komponenter. Osäkerheterna inkluderar eventuell bristande noggrannhet hos såväl de viktiga parametrarna i FCI-processen som i själva beräkningarna. Den sista delen av arbetet handlar om experimentella undersökningar av slaggformationens kylbarhet som genomförts i uppställningen POMECO-HT vid avdelningen för kärnkraftsäkerhet på KTH. Vi vill bestämma effekten av formationens prototypiska egenskaper på kylbarheten. För detta ändamål konstruerades fyra olika formationer: två homogena, en med radiell variation i partikelstorlek och en med triangulär variation. Vi undersökte också hur förbättrad kylning kan uppnås genom att tillföra kylvatten underifrån respektive via ett fallrör (kylning genom naturlig cirkulation). I det avslutande kapitlet ges en sammanfattning av hela arbetet.
QC 20150507
Foudad, Mohamed. "Impact du changement climatique sur la turbulence en ciel clair pour l'aviation". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES061.
Texto completo da fonteIn this thesis, we investigated the impact of climate change on clear-air turbulence (CAT), a phenomenon with important consequences for aviation safety and causes most weather-related aircraft incidents. Recent studies have shown that in response to climate change, CAT could significantly increase. Here, we use several atmospheric reanalyses and coupled model experiments database to incorporate and address the uncertainties related to internal variability and climate models in past and future CAT trends. We conclude that the models are suitable tools to study CAT. Nevertheless, we show that over the North Atlantic region, most models underestimate CAT frequency. Several CAT diagnostics are computed to assess the sensitivity of results to different turbulence representations. We observed a significant increase in CAT frequency in recent decades over several regions in the Northern Hemisphere: North Atlantic, North Pacific, East Asia, Middle East and North Africa. This is mainly due to a large increase in the vertical wind shear related to the subtropical jet strengthening, which is due in turn to the sharpening of the meridional temperature gradient caused by the warming over the tropics and the cooling over high latitudes in upper atmospheric levels. Our results suggest that in some regions of the northern hemisphere, the internal climate variability is large enough to mask the anthropogenic-induced signal, while in others, the changes observed could be potentially attributed to global warming. Multi-model climate projections indicate that the positive trend reported in the past will continue to increase in the future with the global warming level. In general, models project an increase in CAT frequency and intensity within the 20-40°N latitudinal band. In the North Atlantic, large uncertainty remains due to lack of model agreement and differences among the various CAT diagnostics. The projected increases in CAT frequency and intensity shown in this thesis could have a significant impact on aviation operations and safety, as well as on the design of future aircrafts. We have also investigated the connections between CAT and the prevailing weather regimes in the North Atlantic. The analysis indicate that the positive phase of the NAO creates a favorable environment for the development of CAT in the winter season. Trajectories for transatlantic flight routes that minimize fuel consumption (thus CO2 emissions) and avoid CAT are proposed, for each weather regime. We have found that it is possible to reduce fuel consumption while avoiding CAT, with the exception of NAO regime days. Route optimization could therefore benefit the aviation industry and contributing to minimizing aviation's impact on the environment
Livros sobre o assunto "Jet-steam"
R, Diercks D., Shack W. J, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology. e Argonne National Laboratory. Energy Technology Division., eds. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2002.
Encontre o texto completo da fonteR, Diercks D., Shack W. J, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology. e Argonne National Laboratory. Energy Technology Division., eds. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2002.
Encontre o texto completo da fonteHimelblau, Harry. Steam Jet Ash Conveyors. Creative Media Partners, LLC, 2018.
Encontre o texto completo da fonteStandards for Steam Jet Vacuum Systems. 4a ed. Heat Exchange Inst, 1988.
Encontre o texto completo da fontePower, Robert B. Steam Jet Ejectors for the Process Industries. ASME, 2021. http://dx.doi.org/10.1115/1.884829.
Texto completo da fonteSteam jet ejectors for the process industries. Charleston (WV), USA: Robert B. Power, 2005.
Encontre o texto completo da fonteSteam jet ejectors for the process industries. New York: McGraw-Hill, 1994.
Encontre o texto completo da fonteSteam Jet Ejectors for the Process Industries, 2nd ed. author, 2005.
Encontre o texto completo da fonteEllenwood, F. O. Steam Charts, Also a Table of Theoretical Jet Velocities and the Corrections of Mercury Columns. Creative Media Partners, LLC, 2018.
Encontre o texto completo da fonteSteam Charts, Also a Table of Theoretical Jet Velocities and the Corrections of Mercury Columns. Creative Media Partners, LLC, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Jet-steam"
Grave, Harald. "Steam Jet Vacuum Pumps". In Vacuum Technology in the Chemical Industry, 81–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527653898.ch4.
Texto completo da fonteKitamura, Michio, Masayuki Ishikawa, Kenji Sudo, Yuuji Yamaguchi, Tetsuro Ishimura e Keiji Tujita. "Cutting of Steam Turbine Components Using an Abrasive Water Jet". In Jet Cutting Technology, 543–54. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2678-6_36.
Texto completo da fonteUeno, Shunkichi, Hua-Tay Lin e Tatsuki Ohji. "Phase Stabilities and Corrosion/Recession Properties of Rare Earth Silicates Under High Speed Steam jet". In Ceramic Transactions Series, 579–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118932995.ch66.
Texto completo da fonteAnjaiah, D., Raviraj Shetty, R. Pai, M. V. Kini e S. S. Rao. "A Pressured Steam Jet Approach to Tool Wear Minimization in Cutting of Metal Matrix Composites". In Materials Science Forum, 643–46. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.643.
Texto completo da fonteZhang, Chenghu, Yaping Li e Jianli Zhang. "Working Fluid Selection and Thermodynamic Performance of the Steam Jet Large-Temperature-Drop Heat Exchange System". In Environmental Science and Engineering, 145–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_16.
Texto completo da fonteZhang, Chenghu, Yaping Li e Jianli Zhang. "A Developed CRMC Design Method and Numerical Modeling for the Ejector Component in the Steam Jet Heat Pumps". In Environmental Science and Engineering, 135–43. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_15.
Texto completo da fonteBailey, John. "Advances in Forms of Transport—Steam Locomotives, Cycle Tyres, Oceanic Liners, and Jet Aircraft. Transport Infrastructure—Canals, Roads, and Commercial Railways". In Inventive Geniuses Who Changed the World, 37–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81381-9_4.
Texto completo da fonteKoizumi, Yasuo. "Study on Heat Transfer Mechanism of Steam Condensation on Water Jet in Steam Injector". In Advances in Boiling and Condensation [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112415.
Texto completo da fontePower, Robert B. "Full book download". In Steam Jet Ejectors for the Process Industries, 1–500. ASME, 2021. http://dx.doi.org/10.1115/1.884829_ch1.
Texto completo da fonteFanta, George, e Kenneth Eskins. "Starch-Oil Composites Prepared by Steam Jet Cooking". In Paradigm for Successful Utilization of Renewable Resources, 266–86. AOCS Publishing, 1998. http://dx.doi.org/10.1201/9781439832035.ch20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Jet-steam"
Kouremenos, D. A., E. D. Rogdakis e G. K. Alexis. "Optimization of Enhanced Steam-Ejector Applied to Steam Jet Refrigeration". In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0821.
Texto completo da fonteTodman, Mike, e Alex Wallis. "Jet Age Steam Power For Marine Propulsion". In Ship Design and Operation for Environmental Sustainability. RINA, 2002. http://dx.doi.org/10.3940/rina.es.2002.16.
Texto completo da fonteNadig, Ranga. "Evacuation Systems for Steam Surface Condensers: Vacuum Pumps or Steam Jet Air Ejectors?" In ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/power2016-59067.
Texto completo da fonteHong, S. J., B. K. Lim, Seok Cho, S. Y. Chun e G. C. Park. "Dynamic characteristics of horizontal submerged steam jet condensation". In International Heat Transfer Conference 12. Connecticut: Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.540.
Texto completo da fonteSunder Raj, Komandur S. "Steam Jet Air Ejector Performance Evaluation for Nuclear Plants". In International Joint Power Generation Conference collocated with TurboExpo 2003. ASMEDC, 2003. http://dx.doi.org/10.1115/ijpgc2003-40003.
Texto completo da fonteEkes, D., Gy Grof e B. Katona. "Designing a steam jet ejector and its measuring equipment". In 2015 5th International Youth Conference on Energy (IYCE). IEEE, 2015. http://dx.doi.org/10.1109/iyce.2015.7180750.
Texto completo da fonteLi, X., J. L. Gaddis e T. Wang. "Mist/Steam Heat Transfer in Confined Slot Jet Impingement". In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0221.
Texto completo da fonteYoshiki, Hitoshi, Kotaro Tadano e Kenji Kawashima. "Surgical Aspirator with Steam-Jet Coagulator for Hepatic Surgery". In The 3rd World Congress on Electrical Engineering and Computer Systems and Science. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icbes17.123.
Texto completo da fonteLeishear, Robert A., William M. Bennett e Jackie Cooper. "Design and Application of Low Flow Steam Siphon Jet Pumps". In ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/power2016-59748.
Texto completo da fonteMiwa, Shuichiro, Takahiro Moribe, Nozomu Akiyama e Hiroto Sakashita. "Effect of the Jet Stability on Supersonic Steam Injector Operation". In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-82585.
Texto completo da fonteRelatórios de organizações sobre o assunto "Jet-steam"
Stoy, M. A. Steam Transfer Jet Studies with Simulated Sludge Slurries. Office of Scientific and Technical Information (OSTI), setembro de 2001. http://dx.doi.org/10.2172/786664.
Texto completo da fonteLewis, B. E., e H. J. Marquess. Evaluation of a commercially available low-flow steam jet. Office of Scientific and Technical Information (OSTI), agosto de 1986. http://dx.doi.org/10.2172/5350397.
Texto completo da fonteG., Anand. Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2. Office of Scientific and Technical Information (OSTI), janeiro de 1993. http://dx.doi.org/10.2172/80758.
Texto completo da fonteMajumdar, S., D. R. Diercks e W. J. Shack. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents. Office of Scientific and Technical Information (OSTI), maio de 2002. http://dx.doi.org/10.2172/925023.
Texto completo da fonteUse Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam. Office of Scientific and Technical Information (OSTI), setembro de 2005. http://dx.doi.org/10.2172/15020339.
Texto completo da fonteUse Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam. Office of Scientific and Technical Information (OSTI), janeiro de 2006. http://dx.doi.org/10.2172/875769.
Texto completo da fonte