Artigos de revistas sobre o tema "Jak2-Stat3"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Jak2-Stat3".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hofmann, Hans-Dieter, e Matthias Kirsch. "JAK2-STAT3 signaling". JAK-STAT 1, n.º 3 (julho de 2012): 191–93. http://dx.doi.org/10.4161/jkst.20446.
Texto completo da fonteZhou, Zehua, Ying Chen, Wenmin Dong, Rui An, Kun Liang e Xinhong Wang. "Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway". Evidence-Based Complementary and Alternative Medicine 2021 (9 de abril de 2021): 1–13. http://dx.doi.org/10.1155/2021/6657036.
Texto completo da fonteJin, Wenyin, e Yinfeng Shen. "Da-Cheng-Qi Decoction Alleviates Intestinal Injury in Rats with Severe Acute Pancreatitis by Inhibiting the JAK2-STAT3 Signaling Pathway". Evidence-Based Complementary and Alternative Medicine 2019 (14 de agosto de 2019): 1–12. http://dx.doi.org/10.1155/2019/3909468.
Texto completo da fonteKim, Hyunkyung, Dongha Kim, Seon Ah Choi, Chang Rok Kim, Se Kyu Oh, Ki Eun Pyo, Joomyung Kim et al. "KDM3A histone demethylase functions as an essential factor for activation of JAK2−STAT3 signaling pathway". Proceedings of the National Academy of Sciences 115, n.º 46 (30 de outubro de 2018): 11766–71. http://dx.doi.org/10.1073/pnas.1805662115.
Texto completo da fonteBouaouiche, Sarra, Silvia Ghione, Randa Sghaier, Olivier Burgy, Cindy Racoeur, Valentin Derangère, Ali Bettaieb e Stéphanie Plenchette. "Nitric Oxide-Releasing Drug Glyceryl Trinitrate Targets JAK2/STAT3 Signaling, Migration and Invasion of Triple-Negative Breast Cancer Cells". International Journal of Molecular Sciences 22, n.º 16 (6 de agosto de 2021): 8449. http://dx.doi.org/10.3390/ijms22168449.
Texto completo da fonteBarber, Ruth, Jenny Zobel, Daniel Beck, Sian Evans, Richard Elliott, Christopher J. Lord, Alan Ashworth, Andrew G. C. Porter e Simon D. Wagner. "JAK2 Is a Direct BCL6 Target Gene: Implications for Therapy in Diffuse Large B-Cell Lymphoma". Blood 124, n.º 21 (6 de dezembro de 2014): 3112. http://dx.doi.org/10.1182/blood.v124.21.3112.3112.
Texto completo da fonteLi, Yun-Qing. "Down-Regulation of Insulin Signaling Is Involved in Painful Diabetic Neuropathy in Type 2 Diabetes". Pain Physician 2;16, n.º 2;3 (14 de março de 2013): E71—E83. http://dx.doi.org/10.36076/ppj.2013/16/e71.
Texto completo da fonteLei, Bo, Ju Bai, Wanggang Zhang, Aili He, Yinxia Chen, Pengyu Zhang, Lu Qian e Fuling Zhou. "Acute Monocytic Leukemia Associated Antigen MLAA-34 up-Regulates JAK2/STAT3 Expression and JAK2/STAT3 Enhances MLAA-34 Activation in a Positive Feedback Loop". Blood 126, n.º 23 (3 de dezembro de 2015): 1393. http://dx.doi.org/10.1182/blood.v126.23.1393.1393.
Texto completo da fonteZhang, Xuekang, Jun Zhou, Qian Hu, Zhengren Liu, Qiuhong Chen, Wenxiang Wang, Huaigen Zhang, Qin Zhang e Yuanlu Huang. "The Role of Janus Kinase/Signal Transducer and Activator of Transcription Signalling on Preventing Intestinal Ischemia/Reperfusion Injury with Dexmedetomidine". Journal of Nanoscience and Nanotechnology 20, n.º 5 (1 de maio de 2020): 3295–302. http://dx.doi.org/10.1166/jnn.2020.16416.
Texto completo da fonteLiu, Fa-Yu, Jawad Safdar, Zhen-Ning Li, Qi-Gen Fang, Xu Zhang, Zhong-Fei Xu e Chang-Fu Sun. "CCR7 Regulates Cell Migration and Invasion through JAK2/STAT3 in Metastatic Squamous Cell Carcinoma of the Head and Neck". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/415375.
Texto completo da fonteRong, Jing, Lizhong Li, Li Jing, Haiqin Fang e Shuangqing Peng. "JAK2/STAT3 Pathway Mediates Protection of Metallothionein Against Doxorubicin-Induced Cytotoxicity in Mouse Cardiomyocytes". International Journal of Toxicology 35, n.º 3 (2 de novembro de 2015): 317–26. http://dx.doi.org/10.1177/1091581815614261.
Texto completo da fonteKoh, Jin Sung, Jong-Jae Park, Moon Kyung Joo, Hyo Soon Yoo, Jiwon Kim, Yong Jeoung, Ho Kim et al. "Antitumorigenic effect of plumbagin by induction of SHP1 in human gastric carcinoma cell lines." Journal of Clinical Oncology 33, n.º 3_suppl (20 de janeiro de 2015): 74. http://dx.doi.org/10.1200/jco.2015.33.3_suppl.74.
Texto completo da fonteMao, Ying, Yang Yao e Li Liu. "Small molecule inhibitor azd1480 reverses radiotherapy resistance in NSCLC by targeting JAK2/STAT3 pathway". Tropical Journal of Pharmaceutical Research 23, n.º 1 (5 de fevereiro de 2024): 45–50. http://dx.doi.org/10.4314/tjpr.v23i1.6.
Texto completo da fonteZhu, Mingming, Min Yang, Quanyu Yang, Wenling Liu, Hui Geng, Li Pan, Lu Wang et al. "Chronic Hypoxia-Induced Microvessel Proliferation and Basal Membrane Degradation in the Bone Marrow of Rats Regulated through the IL-6/JAK2/STAT3/MMP-9 Pathway". BioMed Research International 2020 (25 de janeiro de 2020): 1–10. http://dx.doi.org/10.1155/2020/9204708.
Texto completo da fonteMorgan, Ethan L., e Andrew Macdonald. "JAK2 Inhibition Impairs Proliferation and Sensitises Cervical Cancer Cells to Cisplatin-Induced Cell Death". Cancers 11, n.º 12 (4 de dezembro de 2019): 1934. http://dx.doi.org/10.3390/cancers11121934.
Texto completo da fonteYu, Xin, Zhi Li, Qilong Wan, Xin Cheng, Jing Zhang, Janak L. Pathak e Zubing Li. "Inhibition of JAK2/STAT3 signaling suppresses bone marrow stromal cells proliferation and osteogenic differentiation, and impairs bone defect healing". Biological Chemistry 399, n.º 11 (25 de outubro de 2018): 1313–23. http://dx.doi.org/10.1515/hsz-2018-0253.
Texto completo da fonteKapuria, Vaibhav, Geoffrey Bartholomeusz, William Bornmann, Ling Y. Kong, Moshe Talpaz e Nicholas J. Donato. "Inhibition of JAK2/STAT Signaling by Degrasyn through a Novel Mechanism." Blood 108, n.º 11 (16 de novembro de 2006): 3423. http://dx.doi.org/10.1182/blood.v108.11.3423.3423.
Texto completo da fontePerrone, Giulia, Elisabetta Calabrese, Teru Hideshima, Gullu Gorgun, Ikeda Hiroshi, Diana Cristea, Loredana Santo, Hu Yiguo e Kenneth C. Anderson. "Panobinostat Inhibits JAK2/STAT3 Pathway in Multiple Myeloma." Blood 114, n.º 22 (20 de novembro de 2009): 2849. http://dx.doi.org/10.1182/blood.v114.22.2849.2849.
Texto completo da fonteSeverin, Filippo, Federica Frezzato, Veronica Martini, Flavia Raggi, Valentina Trimarco, Andrea Visentin, Monica Facco, Gianpietro Semenzato e Livio Trentin. "Three Different Jak2/Stat3-Related Pathways Favor the Survival of Chronic Lymphocytic Leukemia Neoplastic Clone". Blood 132, Supplement 1 (29 de novembro de 2018): 4405. http://dx.doi.org/10.1182/blood-2018-99-114591.
Texto completo da fonteNicholson, SE, U. Novak, SF Ziegler e JE Layton. "Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK". Blood 86, n.º 10 (15 de novembro de 1995): 3698–704. http://dx.doi.org/10.1182/blood.v86.10.3698.bloodjournal86103698.
Texto completo da fonteGrisouard, Jean, Takafumi Shimizu, Adrian Duek, Lucia Kubovcakova, Hui Hao-Shen, Stephan Dirnhofer e Radek C. Skoda. "Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN". Blood 125, n.º 13 (26 de março de 2015): 2131–40. http://dx.doi.org/10.1182/blood-2014-08-594572.
Texto completo da fonteWu, Yang, Tan Yuan, Wei-Wei Wang, Peng-Lei Ge, Zhi-Qiang Gao, Gong Zhang, Zhe Tang et al. "Long Noncoding RNA HOST2 Promotes Epithelial-Mesenchymal Transition, Proliferation, Invasion and Migration of Hepatocellular Carcinoma Cells by Activating the JAK2-STAT3 Signaling Pathway". Cellular Physiology and Biochemistry 51, n.º 1 (2018): 301–14. http://dx.doi.org/10.1159/000495231.
Texto completo da fonteWu, Yi-Hong, Hsing-Yu Chen, Wei-Chin Hong, Chen-Ying Wei e Jong-Hwei Su Pang. "Carboplatin-Induced Thrombocytopenia through JAK2 Downregulation, S-Phase Cell Cycle Arrest, and Apoptosis in Megakaryocytes". International Journal of Molecular Sciences 23, n.º 11 (3 de junho de 2022): 6290. http://dx.doi.org/10.3390/ijms23116290.
Texto completo da fonteXu, Hong, Ya-min Zhang, Hua Sun, Su-hui Chen e Ying-kui Si. "Electroacupuncture at GV20 and ST36 Exerts Neuroprotective Effects via the EPO-Mediated JAK2/STAT3 Pathway in Cerebral Ischemic Rats". Evidence-Based Complementary and Alternative Medicine 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/6027421.
Texto completo da fonteAlanazi, Ahmed Z., e Michelle A. Clark. "Angiotensin III Induces JAK2/STAT3 Leading to IL-6 Production in Rat Vascular Smooth Muscle Cells". International Journal of Molecular Sciences 20, n.º 22 (7 de novembro de 2019): 5551. http://dx.doi.org/10.3390/ijms20225551.
Texto completo da fonteZhang, Zuo, Hongli Zhou e Jiyin Zhou. "Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction". Journal of Molecular Endocrinology 66, n.º 4 (1 de maio de 2021): 259–72. http://dx.doi.org/10.1530/jme-20-0321.
Texto completo da fonteJi, Hongyun, Hui Lu, Feng Li, Ying Qu, Qing Hu e Xiaoran Li. "MiR-189 Exerts Anticancer Activity Through Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) Pathway in Non-Small Cell Lung Cancer". Journal of Biomaterials and Tissue Engineering 11, n.º 12 (1 de dezembro de 2021): 2421–26. http://dx.doi.org/10.1166/jbt.2021.2846.
Texto completo da fonteAuer, Franziska, Minhui Lin, Karin Nebral, Christoph G. W. Gertzen, Oskar A. Haas, Michaela Kuhlen, Holger Gohlke et al. "Novel Recurrent Germline JAK2 G571S Variant in Childhood Acute B-Lymphoblastic Leukemia: A Double Hit One Pathway Scenario". Blood 132, Supplement 1 (29 de novembro de 2018): 387. http://dx.doi.org/10.1182/blood-2018-99-115293.
Texto completo da fonteWu, Jianjiang, Jin Yu, Peng Xie, Yiliyaer Maimaitili, Jiang Wang, Long Yang, Haiping Ma, Xing Zhang, Yining Yang e Hong Zheng. "Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2–STAT3 pathway". PeerJ 5 (4 de abril de 2017): e3196. http://dx.doi.org/10.7717/peerj.3196.
Texto completo da fonteKim, Ji-Hyang, Hack Sun Choi, Su-Lim Kim e Dong-Sun Lee. "The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human Breast Cancer Stem Cell Formation". Cancers 11, n.º 10 (10 de outubro de 2019): 1527. http://dx.doi.org/10.3390/cancers11101527.
Texto completo da fonteLee, Jennifer K., Jung-Heun Ha, Do-Kyun Kim, JaeHee Kwon, Young-Eun Cho e In-Sook Kwun. "Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3". Nutrients 15, n.º 1 (23 de dezembro de 2022): 77. http://dx.doi.org/10.3390/nu15010077.
Texto completo da fonteLi, Xiangzi, Liangtong Li, Xuanchen Liu, Jiawen Wu, Xiaoyu Sun, Zhilin Li, Yong-Jian Geng, Fulin Liu e Yujuan Zhou. "Attenuation of Cardiac Ischaemia-reperfusion Injury by Treatment with Hydrogen-rich Water". Current Molecular Medicine 19, n.º 4 (10 de junho de 2019): 294–302. http://dx.doi.org/10.2174/1566524019666190321113544.
Texto completo da fonteSun, Yueyue, Huan Tong, Lingyu Zeng, Kailin Xu e Jianlin Qiao. "Notch1 Regulates Hepatic Thrombopoietin Production". Blood 142, Supplement 1 (28 de novembro de 2023): 281. http://dx.doi.org/10.1182/blood-2023-177812.
Texto completo da fonteWulansari, Noviana, Yanuar Alan Sulistio, Wahyu Handoko Wibowo Darsono, Chang-Hoon Kim e Sang-Hun Lee. "LIF maintains mouse embryonic stem cells pluripotency by modulating TET1 and JMJD2 activity in a JAK2-dependent manner". Stem Cells 39, n.º 6 (11 de fevereiro de 2021): 750–60. http://dx.doi.org/10.1002/stem.3345.
Texto completo da fonteChatterjee, Prodyot K., Yousef Al-Abed, Barbara Sherry e Christine N. Metz. "Cholinergic agonists regulate JAK2/STAT3 signaling to suppress endothelial cell activation". American Journal of Physiology-Cell Physiology 297, n.º 5 (novembro de 2009): C1294—C1306. http://dx.doi.org/10.1152/ajpcell.00160.2009.
Texto completo da fonteSeverin, Frezzato, Visentin, Martini, Trimarco, Carraro, Tibaldi et al. "In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment". Cancers 11, n.º 12 (4 de dezembro de 2019): 1939. http://dx.doi.org/10.3390/cancers11121939.
Texto completo da fonteNi, Chih-Wen, Hsyue-Jen Hsieh, Yuen-Jen Chao e Danny Ling Wang. "Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow". American Journal of Physiology-Cell Physiology 287, n.º 3 (setembro de 2004): C771—C780. http://dx.doi.org/10.1152/ajpcell.00532.2003.
Texto completo da fonteZhang, Le, Bing-Hui Wu, Ting-Ting Liang, Zhe Liu, Wei Ju, Yi Wang, Yu-Ting Wen, Ming-Cui Liu e Jun-Hui Du. "Leptin activates the JAK/STAT pathway to promote angiogenesis in RF/6A cells in vitro". International Journal of Ophthalmology 15, n.º 4 (18 de abril de 2022): 554–59. http://dx.doi.org/10.18240/ijo.2022.04.05.
Texto completo da fonteYu, Yechen, Xu Wang, Fan Yang, Ke Xing, Lihong Ren e Guangfei Xu. "Effect of Jiawei Tangzhiqing granules on JAK2/STAT3 signal pathway and Th17/Treg ratio in diabetic nephropathy mice". Tropical Journal of Pharmaceutical Research 23, n.º 2 (12 de março de 2024): 279–89. http://dx.doi.org/10.4314/tjpr.v23i2.7.
Texto completo da fonteXu, Yefang, Jingjing Zhang, Jing Wu, Sheng Zhong e Hongxia Li. "Inhibition of JAK2 Reverses Paclitaxel Resistance in Human Ovarian Cancer Cells". International Journal of Gynecologic Cancer 25, n.º 9 (novembro de 2015): 1557–64. http://dx.doi.org/10.1097/igc.0000000000000550.
Texto completo da fonteMellado, M., J. M. Rodríguez-Frade, A. Aragay, G. del Real, A. M. Martín, A. J. Vila-Coro, A. Serrano, F. Mayor e C. Martínez-A. "The Chemokine Monocyte Chemotactic Protein 1 Triggers Janus Kinase 2 Activation and Tyrosine Phosphorylation of the CCR2B Receptor". Journal of Immunology 161, n.º 2 (15 de julho de 1998): 805–13. http://dx.doi.org/10.4049/jimmunol.161.2.805.
Texto completo da fonteRegua, Angelina T., Dongqin Zhu, Daniel L. Doheny, Grace L. Wong, Sara G. Manore, Calvin J. Wagner, Austin Arrigo, Mariana Najjar e Hui-Wen Lo. "Abstract 1039: TrkA and JAK2-STAT3 pathway crosstalk promotes breast cancer stem cells in HER2-enriched and triple-negative breast cancers". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 1039. http://dx.doi.org/10.1158/1538-7445.am2022-1039.
Texto completo da fonteBao, Yan, Wei Liang, Yingchun Ye e Bo Yi. "PERK-Dependent Activation of the JAK2/STAT3 Pathway Contributes to High Glucose-Induced Extracellular Matrix Deposition in Renal Tubular Epithelial Cells". International Journal of Endocrinology 2021 (19 de julho de 2021): 1–9. http://dx.doi.org/10.1155/2021/8475868.
Texto completo da fonteWang, Kun, Yong-Gui Wu, Jing Su, Jing-Jing Zhang, Pei Zhang e Xiang-Ming Qi. "Total Glucosides of Paeony Regulates JAK2/STAT3 Activation and Macrophage Proliferation in Diabetic Rat Kidneys". American Journal of Chinese Medicine 40, n.º 03 (janeiro de 2012): 521–36. http://dx.doi.org/10.1142/s0192415x12500401.
Texto completo da fonteProietti, Cecilia, Mariana Salatino, Cinthia Rosemblit, Romina Carnevale, Adalí Pecci, Alberto R. Kornblihtt, Alfredo A. Molinolo et al. "Progestins Induce Transcriptional Activation of Signal Transducer and Activator of Transcription 3 (Stat3) via a Jak- and Src-Dependent Mechanism in Breast Cancer Cells". Molecular and Cellular Biology 25, n.º 12 (15 de junho de 2005): 4826–40. http://dx.doi.org/10.1128/mcb.25.12.4826-4840.2005.
Texto completo da fonteChao, Angel, Min-Jie Liao, Shun-Hua Chen, Yun-Shien Lee, Chi-Neu Tsai, Chiao-Yun Lin e Chia-Lung Tsai. "JAK2-Mediated Phosphorylation of Stress-Induced Phosphoprotein-1 (STIP1) in Human Cells". International Journal of Molecular Sciences 23, n.º 5 (22 de fevereiro de 2022): 2420. http://dx.doi.org/10.3390/ijms23052420.
Texto completo da fonteWang, MingJun, Jian Wu, Jing Cao, Erye Zhou, Yufeng Yin, Xin Chang e Tao Cheng. "Action of Tofacitinib in a Rat Model of Synovitis". Journal of Biomaterials and Tissue Engineering 12, n.º 10 (1 de outubro de 2022): 1981–87. http://dx.doi.org/10.1166/jbt.2022.3130.
Texto completo da fonteLi, Rong, Juan Yue, Qi Song e Haiyan He. "miR-375 antagonist modified ferroferric oxide nanoparticles inhibited invasion and migration of ovarian cancer cells". Materials Express 13, n.º 7 (1 de julho de 2023): 1154–62. http://dx.doi.org/10.1166/mex.2023.2459.
Texto completo da fonteLi, Wen-Jie, e Hong Lu. "Morroniside ameliorates lipopolysaccharide-induced inflammatory damage in iris pigment epithelial cells through inhibition of TLR4/JAK2/STAT3 pathway". International Journal of Ophthalmology 16, n.º 12 (18 de dezembro de 2023): 1928–34. http://dx.doi.org/10.18240/ijo.2023.12.03.
Texto completo da fonteLi, Minjing, Ju Gao, Defang Li e Yancun Yin. "CEP55 Promotes Cell Motility via JAK2–STAT3–MMPs Cascade in Hepatocellular Carcinoma". Cells 7, n.º 8 (8 de agosto de 2018): 99. http://dx.doi.org/10.3390/cells7080099.
Texto completo da fonte