Artigos de revistas sobre o tema "JAK1-JAK2 inhibitors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "JAK1-JAK2 inhibitors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Yun, Ruifang Liang, Chih-Wei Chen, Tatjana Mallano, Clara Dees, Alfiya Distler, Adam Reich et al. "JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment". Annals of the Rheumatic Diseases 76, n.º 8 (6 de maio de 2017): 1467–75. http://dx.doi.org/10.1136/annrheumdis-2016-210911.
Texto completo da fonteVainchenker, William, Emilie Leroy, Laure Gilles, Caroline Marty, Isabelle Plo e Stefan N. Constantinescu. "JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders". F1000Research 7 (17 de janeiro de 2018): 82. http://dx.doi.org/10.12688/f1000research.13167.1.
Texto completo da fonteBhagwat, Neha, Priya Koppikar, Outi Kilpivaara, Taghi Manshouri, Mazhar Adli, Ann Mullally, Omar Abdel-Wahab et al. "Heterodimeric JAK-STAT Activation As a Mechanism of Persistence to JAK2 Inhibitor Therapy". Blood 118, n.º 21 (18 de novembro de 2011): 122. http://dx.doi.org/10.1182/blood.v118.21.122.122.
Texto completo da fonteJarocha, Danuta Jadwiga, Paul Gadue, Wei Tong, Robert C. Newton e Mortimer Poncz. "Janus Kinase (Jak) 1 Inhibition Affects Both Megakaryopoiesis and Thrombopoiesis". Blood 132, Supplement 1 (29 de novembro de 2018): 2559. http://dx.doi.org/10.1182/blood-2018-99-115407.
Texto completo da fonteMeyer, Sara C., Matthew D. Keller, Priya Koppikar, Olga A. Guryanova, Maria Kleppe, Anna Sophia McKenney, William R. Sellers et al. "Type II Inhibition of JAK2 with NVP-CHZ868 Reverses Type I JAK Inhibitor Persistence and Demonstrates Increased Efficacy in MPN Models". Blood 124, n.º 21 (6 de dezembro de 2014): 160. http://dx.doi.org/10.1182/blood.v124.21.160.160.
Texto completo da fonteKopp, Nadja, Jordy C. Van der Zwet, Jacob Layer, Oliver Weigert, Eric Vangrevelinghe, Akinori Yoda, Thomas Radimerski e David Weinstock. "JAK2 L884P Mutation Confers Resistance To The Type II JAK2 Inhibitor NVP-BBT594 When Co-Occurring With JAK2 R683G But Not JAK2 V617F". Blood 122, n.º 21 (15 de novembro de 2013): 1429. http://dx.doi.org/10.1182/blood.v122.21.1429.1429.
Texto completo da fonteZhong, Haizhen A., e Suliman Almahmoud. "Docking and Selectivity Studies of Covalently Bound Janus Kinase 3 Inhibitors". International Journal of Molecular Sciences 24, n.º 7 (23 de março de 2023): 6023. http://dx.doi.org/10.3390/ijms24076023.
Texto completo da fonteXue, Chengfeng, Jingjing Wang, Na Xu, Yaqiong Pei, Donghai Chen, Jiaping Sun, Qingyang Gu e Qiyao Zhang. "Comparative assessment of selective Janus Kinase inhibitors in rheumatoid arthritis mouse model: Insights into immune modulation and therapeutic implications". Journal of Immunology 212, n.º 1_Supplement (1 de maio de 2024): 0434_4828. http://dx.doi.org/10.4049/jimmunol.212.supp.0434.4828.
Texto completo da fonteLiu, Liqin, Violeta Yu, Jeanne Pistillo, Josie Lee, Laurie B. Schenkel, Stephanie Geuns-Meyer, Ivonne Archibeque, Angus Sinclair, Renee Emkey e Graham Molineux. "New Insights on Assessing Intra-Family Selectivity for Jak2 Inhibitors". Blood 118, n.º 21 (18 de novembro de 2011): 5150. http://dx.doi.org/10.1182/blood.v118.21.5150.5150.
Texto completo da fontePurandare, Ashok V., Animesh Pardanani, Theresa McDevitt, Marco Gottardis, Terra Lasho, Dan You, Louis Lombardo et al. "Characterization of BMS-911543, a Functionally Selective Small Molecule Inhibitor of JAK2". Blood 116, n.º 21 (19 de novembro de 2010): 4112. http://dx.doi.org/10.1182/blood.v116.21.4112.4112.
Texto completo da fonteXu, Lichao, Ding Zhang, Guoqiang Wang, Chao Chen, Ying Wang, Haozhe Huang e Zhenghua Zhang. "Correlation between JAK1/2 expression and immune-related genes and JAK2 gene variants: A pan-cancer analysis." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e15057-e15057. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e15057.
Texto completo da fonteGonzalez-Traves, P., B. Murray, F. Campigotto, A. Meng e J. A. DI Paolo. "THU0067 JAK SELECTIVITY AND THE IMPACT ON CYTOKINE SIGNALING INHIBITION AT CLINICAL RHEUMATOID ARTHRITIS DOSES". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 246.1–246. http://dx.doi.org/10.1136/annrheumdis-2020-eular.2074.
Texto completo da fonteTyner, Jeffrey W., Thomas G. Bumm, Jutta Deininger, Lisa Wood, Karl J. Aichberger, Marc M. Loriaux, Brian J. Druker, Christopher J. Burns, Emmanuelle Fantino e Michael W. Deininger. "CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms". Blood 115, n.º 25 (24 de junho de 2010): 5232–40. http://dx.doi.org/10.1182/blood-2009-05-223727.
Texto completo da fontePerner, Florian, Felix C. Saalfeld, Tina M. Schnoeder, Denise Wolleschak, Corinna Fahldieck, Satish Ranjan, Berend H. Isermann et al. "Specificity of JAK-Kinase Inhibition Determines Impact on T-Cell Function". Blood 124, n.º 21 (6 de dezembro de 2014): 1410. http://dx.doi.org/10.1182/blood.v124.21.1410.1410.
Texto completo da fonteRummelt, Christoph, Sivahari P. Gorantla, Michael Sigl, Jana Saenger, Katharina Götze, Christian Peschel, Justus Duyster e Nikolas von Bubnoff. "FLT3-ITD Interacts with and Phosphorylates IL-3β, and JAK1/2 Dependent IL-3β Activation Bypasses FLT3-ITD in FLT3 Kinase Independent Inhibitor Resistance in Vitro: Evidence for the Significance of IL-3β for FLT3-ITD Dependent Oncogeneic Signaling in AML." Blood 120, n.º 21 (16 de novembro de 2012): 2423. http://dx.doi.org/10.1182/blood.v120.21.2423.2423.
Texto completo da fonteWatson, Eleanor, Michaela Waibel, Prerak Trivedi, Evan Pappas, Stacey Fynch, Robyn Sutherland, Thomas Kay e Helen Thomas. "Prevention of Islet Inflammatory Stress with JAK1/JAK2 Inhibitors". Transplantation 102 (julho de 2018): S370. http://dx.doi.org/10.1097/01.tp.0000543121.88749.46.
Texto completo da fonteHsu, Leeyen, e April W. Armstrong. "JAK Inhibitors: Treatment Efficacy and Safety Profile in Patients with Psoriasis". Journal of Immunology Research 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/283617.
Texto completo da fonteTraves, Paqui G., Bernard Murray, Federico Campigotto, René Galien, Amy Meng e Julie A. Di Paolo. "JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib". Annals of the Rheumatic Diseases 80, n.º 7 (19 de março de 2021): 865–75. http://dx.doi.org/10.1136/annrheumdis-2020-219012.
Texto completo da fonteLiu, X., F. Tan e C. Liang. "THU0080 PRECLINICAL CHARACTERIZATION OF TLL018, A NOVEL, HIGHLY POTENT AND SELECTIVE JAK1/TYK2 INHIBITOR FOR TREATING AUTOIMMUNE DISEASES". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 252.1–252. http://dx.doi.org/10.1136/annrheumdis-2020-eular.1547.
Texto completo da fonteBalko, Justin M., Luis J. Schwarz, Na Luo, Mónica V. Estrada, Jennifer M. Giltnane, Daniel Dávila-González, Kai Wang et al. "Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence". Science Translational Medicine 8, n.º 334 (13 de abril de 2016): 334ra53. http://dx.doi.org/10.1126/scitranslmed.aad3001.
Texto completo da fonteAhmed, Emad A., e Salah A. Abdelsalam. "Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach". Current Issues in Molecular Biology 46, n.º 9 (23 de setembro de 2024): 10635–50. http://dx.doi.org/10.3390/cimb46090631.
Texto completo da fonteSteeghs, Elisabeth M. P., Isabel S. Jerchel, Willemieke de Goffau-Nobel, Alex Q. Hoogkamer, Judith M. Boer, Aurélie Boeree, Cesca van de Ven et al. "JAK2 Aberrations in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia". Blood 128, n.º 22 (2 de dezembro de 2016): 583. http://dx.doi.org/10.1182/blood.v128.22.583.583.
Texto completo da fonteKim, Sena, Peter Ruminski, Megh Singh, Karl Staser, Kidist Ashami, Julie Ritchey, Sora Lim, John F. DiPersio e Jaebok Choi. "Novel JAK Inhibitors to Reduce Graft-Versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation in a Preclinical Mouse Model". Molecules 29, n.º 8 (16 de abril de 2024): 1801. http://dx.doi.org/10.3390/molecules29081801.
Texto completo da fonteKi, S. Y., H. Shin, Y. Lee, H. R. Bak, H. Yu, S. C. Kim, J. Lee, D. Kim, D. H. Ko e D. Kim. "AB0095 PRECLINICAL CHARACTERIZATION OF CJ-15314, A HIGHLY SELECTIVE JAK1 INHIBITOR, FOR THE TREATMENT OF AUTOIMMUNE DISEASES". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 1347.2–1347. http://dx.doi.org/10.1136/annrheumdis-2020-eular.650.
Texto completo da fonteSinclair, Angus, Ivonne Archibeque, Jinghui Zhan, Liqin Liu, Renee Emkey, Elizabeth Doherty e C. Glenn Begley. "Potency and Selectivity Assessment of Small Molecules Against Janus Kinase (JAK) 2: Widely Used AG490 Inhibitor Is Neither Potent Nor Selective for JAK2". Blood 118, n.º 21 (18 de novembro de 2011): 4780. http://dx.doi.org/10.1182/blood.v118.21.4780.4780.
Texto completo da fonteBose, Prithviraj, e Srdan Verstovsek. "JAK2 inhibitors for myeloproliferative neoplasms: what is next?" Blood 130, n.º 2 (13 de julho de 2017): 115–25. http://dx.doi.org/10.1182/blood-2017-04-742288.
Texto completo da fonteCacciapaglia, F., S. Perniola, S. del Vescovo, S. Stano, R. Bizzoca, D. Natuzzi, M. Fornaro e F. Iannone. "AB0134 IN-VITRO STUDY ON THE EFFECT OF SELECTIVE Jak-INHIBITORS ON PBMCs STAT3 PHOSPHORYLATION FROM SYSTEMIC SCLEROSIS PATIENTS". Annals of the Rheumatic Diseases 81, Suppl 1 (23 de maio de 2022): 1196.3–1197. http://dx.doi.org/10.1136/annrheumdis-2022-eular.2625.
Texto completo da fonteBeinhoff, Paul, Lavannya Sabharwal, Vindhya Udhane, Cristina Maranto, Peter S. LaViolette, Kenneth M. Jacobsohn, Susan Tsai et al. "Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development?" Cancers 13, n.º 20 (17 de outubro de 2021): 5204. http://dx.doi.org/10.3390/cancers13205204.
Texto completo da fonteSpinelli, Francesca Romana, Robert A. Colbert e Massimo Gadina. "JAK1: Number one in the family; number one in inflammation?" Rheumatology 60, Supplement_2 (1 de maio de 2021): ii3—ii10. http://dx.doi.org/10.1093/rheumatology/keab024.
Texto completo da fonteDai, Jun, LiXi Yang e Glynn Addison. "Current Status in the Discovery of Covalent Janus Kinase 3 (JAK3) Inhibitors". Mini-Reviews in Medicinal Chemistry 19, n.º 18 (29 de novembro de 2019): 1531–43. http://dx.doi.org/10.2174/1389557519666190617152011.
Texto completo da fonteManshouri, Taghi, Alfonso Quintás-Cardama, Zeev Estrov, Liza Knez, Ying Zhang, Hagop Kantarjian e Srdan Verstovsek. "Bone Marrow Stroma-Mediated Paracrine Inhibition of Ruxolitinib (INCB018424) Induced Apoptosis of JAK2V617F-Mutated Cells". Blood 116, n.º 21 (19 de novembro de 2010): 1976. http://dx.doi.org/10.1182/blood.v116.21.1976.1976.
Texto completo da fonteConstantinescu, Stefan N., Emilie Leroy, Vitalina Gryshkova, Christian Pecquet e Alexandra Dusa. "Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers". Biochemical Society Transactions 41, n.º 4 (18 de julho de 2013): 1048–54. http://dx.doi.org/10.1042/bst20130084.
Texto completo da fonteHornakova, T., L. Springuel, J. Devreux, A. Dusa, S. N. Constantinescu, L. Knoops e J. C. Renauld. "Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors". Haematologica 96, n.º 6 (10 de março de 2011): 845–53. http://dx.doi.org/10.3324/haematol.2010.036350.
Texto completo da fonteAvouac, Jérôme. "Janus Kinase Inhibitor Selectivity in Rheumatoid Arthritis: Where Do We Stand?" Rheumatology 1, n.º 1 (2022): 5. http://dx.doi.org/10.17925/rmd.2022.1.1.5.
Texto completo da fontePorpaczy, Edit, Sabrina Tripolt, Andrea Hoelbl-Kovacic, Bettina Gisslinger, Zsuzsanna Bago-Horvath, Emilio Casanova-Hevia, Emmanuelle Clappier et al. "Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy". Blood 132, n.º 7 (16 de agosto de 2018): 694–706. http://dx.doi.org/10.1182/blood-2017-10-810739.
Texto completo da fonteFrede, N., J. Hueppe, R. Lorenzetti, A. Troilo, M. T. Schleyer, R. Voll, J. Thiel, N. Venhoff e M. Rizzi. "THU0030 DISTINCT EFFECTS OF FIVE JAK INHIBITORS IN THE MODULATION OF HUMAN B CELL ACTIVATION". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 228.2–229. http://dx.doi.org/10.1136/annrheumdis-2020-eular.5763.
Texto completo da fonteVannucchi, Alessandro M., Costanza Bogani, Niccolò Bartalucci, Lorenzo Tozzi, Serena Martinelli, Paola Guglielmelli, Chiara Paoli, Lisa Pieri e Alberto Bosi. "Inhibitors of PI3K/Akt and/or mTOR Inhibit the Growth of Cells of Myeloproliferative Neoplasms and Synergize with JAK2 Inhibitor and Interferon",. Blood 118, n.º 21 (18 de novembro de 2011): 3835. http://dx.doi.org/10.1182/blood.v118.21.3835.3835.
Texto completo da fonteVian, Laura, Mimi Lee, Giuseppe Sciumè, Nathalia Gazaniga, Stefania Dell'Orso, Stephen Brooks e Massimo Gadina. "Elucidating the role of cytokine signaling in the homeostasis of innate immune cells with JAK inhibitors". Journal of Immunology 202, n.º 1_Supplement (1 de maio de 2019): 181.27. http://dx.doi.org/10.4049/jimmunol.202.supp.181.27.
Texto completo da fonteRefici, Marion, Ziping Yang, Jacob Riehm, Darren Phillips, Andrew Souers e Jason Harb. "Abstract 5339: BCL2A1 is expressed in myelofibrosis specimens and JAK2-mutated UKE-1 cells, yet does not inhibit synergistic cell killing by BCL-XL inhibitor navitoclax plus JAK1/2 inhibitors, including ruxolitinib". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 5339. http://dx.doi.org/10.1158/1538-7445.am2022-5339.
Texto completo da fonteCacciapaglia, F., V. Venerito, S. del Vescovo, S. Stano, R. Bizzoca, D. Natuzzi, N. Lacarpia, M. Fornaro e F. Iannone. "AB0070 INHIBITION OF STAT3 IN PBMCs FROM RHEUMATOID ARTHRITIS PATIENTS: CLUES TO UNDERSTAND SELECTIVITY OF JANUS KINASE INHIBITORS". Annals of the Rheumatic Diseases 81, Suppl 1 (23 de maio de 2022): 1167.2–1168. http://dx.doi.org/10.1136/annrheumdis-2022-eular.1997.
Texto completo da fonteGotlib, Jason. "JAK inhibition in the myeloproliferative neoplasms: lessons learned from the bench and bedside". Hematology 2013, n.º 1 (6 de dezembro de 2013): 529–37. http://dx.doi.org/10.1182/asheducation-2013.1.529.
Texto completo da fonteGotlib, Jason. "JAK inhibition in the myeloproliferative neoplasms: lessons learned from the bench and bedside". Hematology 2013, n.º 1 (6 de dezembro de 2013): 529–37. http://dx.doi.org/10.1182/asheducation.v2013.1.529.3847112.
Texto completo da fonteShao, Shuai, Lam C. Tsoi, Mrinal K. Sarkar, Xianying Xing, Ke Xue, Ranjitha Uppala, Celine C. Berthier et al. "IFN-γ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus". Science Translational Medicine 11, n.º 511 (25 de setembro de 2019): eaav7561. http://dx.doi.org/10.1126/scitranslmed.aav7561.
Texto completo da fontede Melo Campos, Paula, Joao Machado-Neto, Adriana Silva Santos Duarte, Rafaela Mendonça, Irene Lorand-Metze, Fernando F. Costa, Sara T. O. Saad e Fabiola Traina. "IRS2 Associates With JAK2 and May Be Involved In Cell Proliferation Pathways In Chronic Myeloproliferative Neoplasms". Blood 122, n.º 21 (15 de novembro de 2013): 1598. http://dx.doi.org/10.1182/blood.v122.21.1598.1598.
Texto completo da fonteZhang, Xuekang, Jun Zhou, Qian Hu, Zhengren Liu, Qiuhong Chen, Wenxiang Wang, Huaigen Zhang, Qin Zhang e Yuanlu Huang. "The Role of Janus Kinase/Signal Transducer and Activator of Transcription Signalling on Preventing Intestinal Ischemia/Reperfusion Injury with Dexmedetomidine". Journal of Nanoscience and Nanotechnology 20, n.º 5 (1 de maio de 2020): 3295–302. http://dx.doi.org/10.1166/jnn.2020.16416.
Texto completo da fonteUpadhayaya, Ram S., Raghava Reddy Kethiri, Avanish Vellanki, Jeff Lightfoot, Andrea Local e William G. Rice. "Discovery of Selective Dual Inhibitors of Bromodomain Protein BRD4 and JAK2 for Treatment of Hematologic Malignancies". Blood 128, n.º 22 (2 de dezembro de 2016): 5212. http://dx.doi.org/10.1182/blood.v128.22.5212.5212.
Texto completo da fonteChoi, Jaebok, Matthew L. Cooper, Kiran R. Vij, Bing Wang, Julie Ritchey, Bader Alahmari, Matthew Holt e John F. DiPersio. "Pharmacologic Co-Blockade of IFNγR and IL6R Pathways to Prevent and Treat GvHD". Blood 128, n.º 22 (2 de dezembro de 2016): 3353. http://dx.doi.org/10.1182/blood.v128.22.3353.3353.
Texto completo da fonteMarkovtsov, Vadim, Elizabeth Tonkin, Shuling Fang, Chiang Liu, Marina Gelman, Wayne Lang, Jason Romero et al. "In Vitro and in Vivo Inhibition of JAK2 Signaling by Potent and Selective JAK2 Inhibitor". Blood 112, n.º 11 (16 de novembro de 2008): 3721. http://dx.doi.org/10.1182/blood.v112.11.3721.3721.
Texto completo da fonteMalemud, Charles J. "The role of the JAK/STAT signal pathway in rheumatoid arthritis". Therapeutic Advances in Musculoskeletal Disease 10, n.º 5-6 (19 de maio de 2018): 117–27. http://dx.doi.org/10.1177/1759720x18776224.
Texto completo da fonteClarke, A., J. Di Paolo, B. Downie, A. Meng, N. Mollova, Y. Yu e P. Han. "P460 Evaluation of potential mechanisms underlying the safety observations of filgotinib in clinical studies in rheumatoid arthritis". Journal of Crohn's and Colitis 14, Supplement_1 (janeiro de 2020): S409. http://dx.doi.org/10.1093/ecco-jcc/jjz203.589.
Texto completo da fonte