Literatura científica selecionada sobre o tema "Iterated forcing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Iterated forcing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Iterated forcing"
Friedman, Sy D. "Iterated Class Forcing". Mathematical Research Letters 1, n.º 4 (1994): 427–36. http://dx.doi.org/10.4310/mrl.1994.v1.n4.a3.
Texto completo da fonteGroszek, Marcia J. "Applications of iterated perfect set forcing". Annals of Pure and Applied Logic 39, n.º 1 (julho de 1988): 19–53. http://dx.doi.org/10.1016/0168-0072(88)90044-9.
Texto completo da fonteFerrero, Daniela, Thomas Kalinowski e Sudeep Stephen. "Zero forcing in iterated line digraphs". Discrete Applied Mathematics 255 (fevereiro de 2019): 198–208. http://dx.doi.org/10.1016/j.dam.2018.08.019.
Texto completo da fonteSpinas, O. "Iterated forcing in quadratic form theory". Israel Journal of Mathematics 79, n.º 2-3 (outubro de 1992): 297–315. http://dx.doi.org/10.1007/bf02808222.
Texto completo da fonteIhoda, Jaime I., e Saharon Shelah. "Souslin forcing". Journal of Symbolic Logic 53, n.º 4 (dezembro de 1988): 1188–207. http://dx.doi.org/10.1017/s0022481200028012.
Texto completo da fonteAudrito, Giorgio, e Matteo Viale. "Absoluteness via resurrection". Journal of Mathematical Logic 17, n.º 02 (27 de novembro de 2017): 1750005. http://dx.doi.org/10.1142/s0219061317500052.
Texto completo da fonteIshiu, Tetsuya, e Paul B. Larson. "Some results about (+) proved by iterated forcing". Journal of Symbolic Logic 77, n.º 2 (junho de 2012): 515–31. http://dx.doi.org/10.2178/jsl/1333566635.
Texto completo da fonteShelah, Saharon. "Iterated forcing and normal ideals onω 1". Israel Journal of Mathematics 60, n.º 3 (dezembro de 1987): 345–80. http://dx.doi.org/10.1007/bf02780398.
Texto completo da fonteMitchell, William. "Prikry forcing at κ+ and beyond". Journal of Symbolic Logic 52, n.º 1 (março de 1987): 44–50. http://dx.doi.org/10.2307/2273859.
Texto completo da fonteKanovei, Vladimir. "On non-wellfounded iterations of the perfect set forcing". Journal of Symbolic Logic 64, n.º 2 (junho de 1999): 551–74. http://dx.doi.org/10.2307/2586484.
Texto completo da fonteTeses / dissertações sobre o assunto "Iterated forcing"
Tzimas, Dimitrios V. "A new framework of iterated forcing along a gap one morass at [omega]1". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29862.
Texto completo da fonteOn t.p., "[omega]" appears as the lower case Greek letter.
Includes bibliographical references (leaves 38-39 ).
by Dimitrios V. Tzimas.
Ph.D.
Santiago, Suárez Juan Manuel. "Infinitary logics and forcing". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Texto completo da fonteThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Spasojević, Zoran. "Gaps, trees and iterated forcing". 1994. http://catalog.hathitrust.org/api/volumes/oclc/32101789.html.
Texto completo da fonteLivros sobre o assunto "Iterated forcing"
Chong, C. T., W. H. Woodin, Qi Feng, T. A. Slaman e Yue Yang. Forcing, iterated ultrapowers, and Turing degrees. New Jersey: World Scientific, 2015.
Encontre o texto completo da fonteChong, Chitat, Qi Feng, Theodore A. Slaman, W. Hugh Woodin e Yue Yang. Forcing, Iterated Ultrapowers, and Turing Degrees. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9697.
Texto completo da fonteForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Encontre o texto completo da fonteForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Iterated forcing"
Shelah, Saharon. "Iterated Forcing with Uncountable Support". In Perspectives in Mathematical Logic, 679–731. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-12831-2_14.
Texto completo da fonteCummings, James. "Iterated Forcing and Elementary Embeddings". In Handbook of Set Theory, 775–883. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_13.
Texto completo da fonte"Iterated Forcing". In An Introduction to Independence for Analysts, 183–228. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511662256.009.
Texto completo da fonte"Iterated Forcing". In Forcing for Mathematicians, 85–88. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814566018_0022.
Texto completo da fonteGitik, Moti. "PRIKRY-TYPE FORCINGS AND A FORCING WITH SHORT EXTENDERS". In Forcing, Iterated Ultrapowers, and Turing Degrees, 1–38. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0001.
Texto completo da fonte"Iterated Forcing and Martin’s Axiom". In Fast Track to Forcing, 71–78. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108303866.012.
Texto completo da fonteSteel, John. "AN INTRODUCTION TO ITERATED ULTRAPOWERS". In Forcing, Iterated Ultrapowers, and Turing Degrees, 123–74. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0003.
Texto completo da fonteShore, Richard A. "THE TURING DEGREES: AN INTRODUCTION". In Forcing, Iterated Ultrapowers, and Turing Degrees, 39–121. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0002.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Iterated forcing"
Kara, Mustafa C., e Thorsten Stoesser. "A Strong FSI Coupling Scheme to Investigate the Onset of Resonance of Cylinders in Tandem Arrangement". In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23972.
Texto completo da fonte