Artigos de revistas sobre o tema "Iron oxide microparticles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Iron oxide microparticles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Bica, Ioan, Eugen Mircea Anitas, Hyoung Jin Choi e Paula Sfirloaga. "Microwave-assisted synthesis and characterization of iron oxide microfibers". Journal of Materials Chemistry C 8, n.º 18 (2020): 6159–67. http://dx.doi.org/10.1039/c9tc05687d.
Texto completo da fonteCarrelo, Henrique, André R. Escoval, Tânia Vieira, Mercedes Jiménez-Rosado, Jorge Carvalho Silva, Alberto Romero, Paula Isabel P. Soares e João Paulo Borges. "Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications". Gels 9, n.º 12 (15 de dezembro de 2023): 982. http://dx.doi.org/10.3390/gels9120982.
Texto completo da fonteKrajewski, M., K. Brzozka, W. S. Lin, H. M. Lin, M. Tokarczyk, J. Borysiuk, G. Kowalski e D. Wasik. "High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles". Physical Chemistry Chemical Physics 18, n.º 5 (2016): 3900–3909. http://dx.doi.org/10.1039/c5cp07569f.
Texto completo da fonteKoudelkova, Zuzana, Zuzana Bytesnikova, Kledi Xhaxhiu, Monika Kremplova, David Hynek, Vojtech Adam e Lukas Richtera. "Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide". Molecules 24, n.º 6 (18 de março de 2019): 1063. http://dx.doi.org/10.3390/molecules24061063.
Texto completo da fonteŽaimis, Uldis, Jūratė Jolanta Petronienė, Andrius Dzedzickis e Vytautas Bučinskas. "Stretch Sensor: Development of Biodegradable Film". Sensors 24, n.º 2 (21 de janeiro de 2024): 683. http://dx.doi.org/10.3390/s24020683.
Texto completo da fonteKabiri, Shervin, Mahaveer D. Kurkuri, Tushar Kumeria e Dusan Losic. "Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection". RSC Adv. 4, n.º 29 (2014): 15276–80. http://dx.doi.org/10.1039/c4ra01393j.
Texto completo da fonteMatsunaga, H., M. Kiguchi, B. Roth e P. D. Evans. "Visualisation of Metals in Pine Treated with Preservative Containing Copper and Iron Nanoparticles". IAWA Journal 29, n.º 4 (2008): 387–96. http://dx.doi.org/10.1163/22941932-90000193.
Texto completo da fonteTronc, E., e D. Bonnin. "Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy". Journal de Physique Lettres 46, n.º 10 (1985): 437–43. http://dx.doi.org/10.1051/jphyslet:019850046010043700.
Texto completo da fonteRodríguez, Cristian F., Paula Guzmán-Sastoque, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma e Juan C. Cruz. "Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA". Micromachines 15, n.º 8 (22 de agosto de 2024): 1057. http://dx.doi.org/10.3390/mi15081057.
Texto completo da fonteHavelka, Ondřej, Martin Cvek, Michal Urbánek, Dariusz Łukowiec, Darina Jašíková, Michal Kotek, Miroslav Černík, Vincenzo Amendola e Rafael Torres-Mendieta. "On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments". Nanomaterials 11, n.º 6 (10 de junho de 2021): 1538. http://dx.doi.org/10.3390/nano11061538.
Texto completo da fonteKnoche Gupta, Krysti, Heung Chan Lee, Joshua Richard Coduto e Johna Leddy. "(Invited) Glassy Carbon Electrodes Modified with Micromagnets: Magnetoelectrocatalysis of HER". ECS Meeting Abstracts MA2022-02, n.º 30 (9 de outubro de 2022): 1112. http://dx.doi.org/10.1149/ma2022-02301112mtgabs.
Texto completo da fonteAmara, Daniel, e Shlomo Margel. "Synthesis and characterization of elemental iron and iron oxide nano/microcomposite particles by thermal decomposition of ferrocene". Nanotechnology Reviews 2, n.º 3 (1 de junho de 2013): 333–57. http://dx.doi.org/10.1515/ntrev-2012-0061.
Texto completo da fonteRafieepour, Athena, Mansour R. Azari, Habibollah Peirovi, Fariba Khodagholi, Jalal Pourahmad Jaktaji, Yadollah Mehrabi, Parvaneh Naserzadeh e Yousef Mohammadian. "Investigation of the effect of magnetite iron oxide particles size on cytotoxicity in A549 cell line". Toxicology and Industrial Health 35, n.º 11-12 (novembro de 2019): 703–13. http://dx.doi.org/10.1177/0748233719888077.
Texto completo da fonteMel’nikov, G. Yu, L. M. Ranero, A. P. Safronov, A. Larrañaga, A. V. Svalov e G. V. Kurlyandskaya. "Epoxy Composites with Iron Oxide Microparticles: Model Materials for Magnetic Detection". Physics of Metals and Metallography 123, n.º 11 (novembro de 2022): 1075–83. http://dx.doi.org/10.1134/s0031918x22601330.
Texto completo da fonteDalzon, Torres, Reymond, Gallet, Saint-Antonin, Collin-Faure, Moriscot et al. "Influences of Nanoparticles Characteristics on the Cellular Responses: The Example of Iron Oxide and Macrophages". Nanomaterials 10, n.º 2 (5 de fevereiro de 2020): 266. http://dx.doi.org/10.3390/nano10020266.
Texto completo da fonteThébault, C., M. Marmiesse, C. Naud, K. Pernet-Gallay, E. Billiet, H. Joisten, B. Dieny, M. Carrière, Y. Hou e R. Morel. "Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis". Nanoscale Advances 3, n.º 21 (2021): 6213–22. http://dx.doi.org/10.1039/d1na00461a.
Texto completo da fonteDresvyannikov, A. F., L. E. Kalugin, M. M. Mironov e M. F. Shaekhov. "Influence of plasma high-frequency induction discharge on the physical and chemical properties of the Ti – Fe – Ni dispersed system obtained by the electrochemical method". Physics and Chemistry of Materials Treatment 4 (2022): 15–22. http://dx.doi.org/10.30791/0015-3214-2022-4-15-22.
Texto completo da fontePipíška, Martin, Simona Zarodňanská, Miroslav Horník, Libor Ďuriška, Marián Holub e Ivo Šafařík. "Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal". Materials 13, n.º 16 (16 de agosto de 2020): 3619. http://dx.doi.org/10.3390/ma13163619.
Texto completo da fonteChistè, Elena, Gloria Ischia, Marco Gerosa, Pasquina Marzola, Marina Scarpa e Nicola Daldosso. "Porous Si Microparticles Infiltrated with Magnetic Nanospheres". Nanomaterials 10, n.º 3 (4 de março de 2020): 463. http://dx.doi.org/10.3390/nano10030463.
Texto completo da fonteSMIRNOV, V. M., G. P. VORONKOV, V. G. SEMENOV, V. G. POVAROV e I. V. MURIN. "MÖSSBAUER STUDY OF STRUCTURAL–CHEMICAL TRANSFORMATION IN TWO-DIMENSIONAL IRON–OXYGEN NANOSTRUCTURES IN THE COURSE OF TRANSPORT REDUCTION". Surface Review and Letters 07, n.º 01n02 (fevereiro de 2000): 1–6. http://dx.doi.org/10.1142/s0218625x00000026.
Texto completo da fontePospiskova, K., G. Prochazkova e I. Safarik. "One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles". Letters in Applied Microbiology 56, n.º 6 (4 de abril de 2013): 456–61. http://dx.doi.org/10.1111/lam.12069.
Texto completo da fonteMöller, Winfried, Gerhard Scheuch, Knut Sommerer e Joachim Heyder. "Preparation of spherical monodisperse ferrimagnetic iron-oxide microparticles between 1 and 5μm diameter". Journal of Magnetism and Magnetic Materials 225, n.º 1-2 (janeiro de 2001): 8–16. http://dx.doi.org/10.1016/s0304-8853(00)01221-x.
Texto completo da fonteOliveira, João Pedro Jenson de, Acelino Cardoso de Sá e Leonardo Lataro Paim. "Electrocatalysis of Ethanol and Methanol Electrooxidation by Composite Electrodes with NiOOH/FeOOH Supported on Reduced Graphene Oxide onto Composite Electrodes". Chemistry Proceedings 2, n.º 1 (9 de novembro de 2020): 2. http://dx.doi.org/10.3390/eccs2020-07523.
Texto completo da fonteKatsnelson, Boris A., Larisa I. Privalova, Sergey V. Kuzmin, Vladimir B. Gurvich, Marina P. Sutunkova, Ekaterina P. Kireyeva e Ilzira A. Minigalieva. "An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4". ISRN Nanotechnology 2012 (7 de agosto de 2012): 1–12. http://dx.doi.org/10.5402/2012/143613.
Texto completo da fonteDolmatov, Arthur V., Sergey S. Maklakov, Anastasia V. Artemova, Dmitry A. Petrov, Artem O. Shiryaev e Andrey N. Lagarkov. "Deposition of Thick SiO2 Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance". Sensors 23, n.º 3 (3 de fevereiro de 2023): 1727. http://dx.doi.org/10.3390/s23031727.
Texto completo da fonteMurashova, Nataliya M., Ayuna A. Dambieva e Evgeniy V. Yurtov. "EFFECT OF NANO- AND MICROPARTICLES OF IRON (III) OXIDE ON VISCOSITY OF LAMELLAR LIQUID CRYSTALS OF LECITHIN". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, n.º 5 (12 de julho de 2018): 41. http://dx.doi.org/10.6060/tcct.20165905.5330.
Texto completo da fonteMcAteer, Martina A., Nicola R. Sibson, Constantin von zur Muhlen, Jurgen E. Schneider, Andrew S. Lowe, Nicholas Warrick, Keith M. Channon, Daniel C. Anthony e Robin P. Choudhury. "In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide". Nature Medicine 13, n.º 10 (23 de setembro de 2007): 1253–58. http://dx.doi.org/10.1038/nm1631.
Texto completo da fonteZhu, Yeqing, You Ling, Jinglian Zhong, Xueguo Liu, Kun Wei e Suiqiao Huang. "Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide". Acta Radiologica 53, n.º 7 (setembro de 2012): 812–19. http://dx.doi.org/10.1258/ar.2012.120040.
Texto completo da fonteXu, Chenjie, David Miranda-Nieves, James A. Ankrum, Mads Emil Matthiesen, Joseph A. Phillips, Isaac Roes, Gregory R. Wojtkiewicz et al. "Tracking Mesenchymal Stem Cells with Iron Oxide Nanoparticle Loaded Poly(lactide-co-glycolide) Microparticles". Nano Letters 12, n.º 8 (12 de julho de 2012): 4131–39. http://dx.doi.org/10.1021/nl301658q.
Texto completo da fonteYan, Fei, Wei Yang, Xiang Li, Hongmei Liu, Xiang Nan, Lisi Xie, Dongliang Zhou et al. "Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice". BioMed Research International 2015 (21 de julho de 2015): 1–10. http://dx.doi.org/10.1155/2015/758616.
Texto completo da fonteKothari, Manisha S., Ashraf Aly Hassan e Kosha A. Shah. "Three-Dimensional Electrochemical Oxidation of Recalcitrant Dye Using Green Iron Microparticles". Water 13, n.º 14 (12 de julho de 2021): 1925. http://dx.doi.org/10.3390/w13141925.
Texto completo da fonteReibenspies, Joseph H., e Nattamai Bhuvanesh. "X-ray powder diffraction characterization of iron microparticles on a Bruker SMART1000 single-crystal X-ray diffractometer". Powder Diffraction 24, n.º 4 (dezembro de 2009): 347–50. http://dx.doi.org/10.1154/1.3257614.
Texto completo da fonteThayse, Kathleen, Nadège Kindt, Sophie Laurent e Stéphane Carlier. "VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques". Biology 9, n.º 11 (29 de outubro de 2020): 368. http://dx.doi.org/10.3390/biology9110368.
Texto completo da fonteBai, Meng-Yi, Mu-Hsien Yu, Ting-Teng Wang, Shiu-Hsin Chen e Yu-Chi Wang. "Plate-like Alginate Microparticles with Disulfiram–SPIO–Coencapsulation: An In Vivo Study for Combined Therapy on Ovarian Cancer". Pharmaceutics 13, n.º 9 (27 de agosto de 2021): 1348. http://dx.doi.org/10.3390/pharmaceutics13091348.
Texto completo da fonteAraújo, Jefferson F. D. F., João M. B. Pereira e Antônio C. Bruno. "Assembling a magnetometer for measuring the magnetic propertiesof iron oxide microparticles in the classroom laboratory". American Journal of Physics 87, n.º 6 (junho de 2019): 471–75. http://dx.doi.org/10.1119/1.5100944.
Texto completo da fonteWassel, Ronald A., Brian Grady, Richard D. Kopke e Kenneth J. Dormer. "Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles". Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, n.º 2-3 (janeiro de 2007): 125–30. http://dx.doi.org/10.1016/j.colsurfa.2006.06.012.
Texto completo da fonteMöller, Winfried Barth, Martin Kohl, Winfried. "HUMAN ALVEOLAR LONG-TERM CLEARANCE OF FERROMAGNETIC IRON OXIDE MICROPARTICLES IN HEALTHY AND DISEASED SUBJECTS". Experimental Lung Research 27, n.º 7 (janeiro de 2001): 547–68. http://dx.doi.org/10.1080/019021401753181827.
Texto completo da fonteTewes, Frederic, Carsten Ehrhardt e Anne Marie Healy. "Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung". European Journal of Pharmaceutics and Biopharmaceutics 86, n.º 1 (janeiro de 2014): 98–104. http://dx.doi.org/10.1016/j.ejpb.2013.09.004.
Texto completo da fonteYassine, O., E. Q. Li, A. Alfadhel, A. Zaher, M. Kavaldzhiev, S. T. Thoroddsen e J. Kosel. "Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery". International Journal of Polymer Science 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/1219469.
Texto completo da fonteKról, Jarosƚaw E., e Garth D. Ehrlich. "Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms". Microorganisms 11, n.º 6 (7 de junho de 2023): 1515. http://dx.doi.org/10.3390/microorganisms11061515.
Texto completo da fonteМельников, Г. Ю., В. Н. Лепаловский e Г. В. Курляндская. "Магнитный импеданс пленочных наноструктур для оценки полей рассеяния микрочастиц магнитных композитов". Журнал технической физики 92, n.º 2 (2022): 321. http://dx.doi.org/10.21883/jtf.2022.02.52024.259-21.
Texto completo da fonteМельников, Г. Ю., В. Н. Лепаловский, А. П. Сафронов, И. В. Бекетов, А. В. Багазеев, Д. С. Незнахин e Г. В. Курляндская. "Магнитные композиты на основе эпоксидной смолы с магнитными микро- и наночастицами оксида железа: фокус на магнитное детектирование". Физика твердого тела 65, n.º 7 (2023): 1100. http://dx.doi.org/10.21883/ftt.2023.07.55829.22h.
Texto completo da fonteRatajczak, Filip, Bassam Jameel, Rafał Bielas e Arkadiusz Józefczak. "Ultrasound Control of Pickering Emulsion-Based Capsule Preparation". Sensors 24, n.º 17 (2 de setembro de 2024): 5710. http://dx.doi.org/10.3390/s24175710.
Texto completo da fonteYan, Fei, Wei Yang, Xiang Li, Hongmei Liu, Xiang Nan, Lisi Xie, Dongliang Zhou et al. "Erratum to “Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice”". BioMed Research International 2018 (18 de outubro de 2018): 1–2. http://dx.doi.org/10.1155/2018/8093438.
Texto completo da fonteAl Faraj, Achraf, Florence Gazeau, Claire Wilhelm, Cécile Devue, Coralie L. Guérin, Christine Péchoux, Valérie Paradis, Olivier Clément, Chantal M. Boulanger e Pierre-Emmanuel Rautou. "Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice". Radiology 263, n.º 1 (abril de 2012): 169–78. http://dx.doi.org/10.1148/radiol.11111329.
Texto completo da fonteBadhe, Ravindra V., Pradeep Kumar, Yahya E. Choonara, Thashree Marimuthu, Olufemi D. Akilo, Pierre P. D. Kondiah, Lisa C. du Toit e Viness Pillay. "Induction of creep crack morphology in iron oxide microparticles: An outcome of the common-ion effect". Materials Letters 188 (fevereiro de 2017): 417–22. http://dx.doi.org/10.1016/j.matlet.2016.11.072.
Texto completo da fonteGordon, Andrew C., Robert J. Lewandowski, Riad Salem, Delbert E. Day, Reed A. Omary e Andrew C. Larson. "Localized Hyperthermia with Iron Oxide–Doped Yttrium Microparticles: Steps toward Image-Guided Thermoradiotherapy in Liver Cancer". Journal of Vascular and Interventional Radiology 25, n.º 3 (março de 2014): 397–404. http://dx.doi.org/10.1016/j.jvir.2013.10.022.
Texto completo da fonteMcAteer, Martina A., Asim M. Akhtar, Constantin von zur Muhlen e Robin P. Choudhury. "An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide". Atherosclerosis 209, n.º 1 (março de 2010): 18–27. http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.009.
Texto completo da fonteDinislamova, Olga A., Antonina V. Bugayova, Tatyana F. Shklyar, Alexander P. Safronov e Felix A. Blyakhman. "Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles". Bioengineering 8, n.º 10 (11 de outubro de 2021): 140. http://dx.doi.org/10.3390/bioengineering8100140.
Texto completo da fonteMelnikov G. Yu., Lepalovskij V. N. e Kurlyandskaya G. V. "Magnetic impedance of film nanostructures for stray magnetic field evaluation of microparticles in magnetic composites". Technical Physics 92, n.º 2 (2022): 266. http://dx.doi.org/10.21883/tp.2022.02.52958.259-21.
Texto completo da fonte