Artigos de revistas sobre o tema "Iron-Carbon"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Iron-Carbon".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kulnitskiy, B. A., e V. D. Blank. "Iron Carbide Formation inside Carbon Nanotubes". Advanced Materials & Technologies, n.º 3 (2017): 034–39. http://dx.doi.org/10.17277/amt.2017.03.pp.034-039.
Texto completo da fonteBhadeshia, H. K. D. H. "Carbon–carbon interactions in iron". Journal of Materials Science 39, n.º 12 (junho de 2004): 3949–55. http://dx.doi.org/10.1023/b:jmsc.0000031476.21217.fa.
Texto completo da fonteMeyers, G. J. "IRON CARBON ALLOYS.*". Journal of the American Society for Naval Engineers 26, n.º 4 (18 de março de 2009): 1127–35. http://dx.doi.org/10.1111/j.1559-3584.1914.tb00344.x.
Texto completo da fonteBradley, John R., e Sooho Kim. "Laser transformation hardening of iron-carbon and iron- carbon- chromium steels". Metallurgical Transactions A 19, n.º 8 (agosto de 1988): 2013–25. http://dx.doi.org/10.1007/bf02645205.
Texto completo da fonteMarukovich, E. I., V. Yu Stetsenko e A. V. Stetsenko. "Nanostructured recrystallization of iron‑carbon alloys". Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), n.º 3 (14 de outubro de 2022): 27–29. http://dx.doi.org/10.21122/1683-6065-2022-3-27-29.
Texto completo da fonteBlodau, Christian, Charlotte L. Roehm e Tim R. Moore. "Iron, sulfur, and dissolved carbon dynamics in a northern peatland". Fundamental and Applied Limnology 154, n.º 4 (7 de agosto de 2002): 561–83. http://dx.doi.org/10.1127/archiv-hydrobiol/154/2002/561.
Texto completo da fonteWang, Cui, Jianliang Zhang, Wen Chen, Xiaolei Li, Kexin Jiao, Zhenping Pang, Zhongyi Wang, Tongsheng Wang e Zhengjian Liu. "Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth". Metals 12, n.º 5 (20 de maio de 2022): 871. http://dx.doi.org/10.3390/met12050871.
Texto completo da fonteVan Genderen, M. J., M. Isac, A. Böttger e E. J. Mittemeijer. "Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite". Metallurgical and Materials Transactions A 28, n.º 3 (março de 1997): 545–61. http://dx.doi.org/10.1007/s11661-997-0042-5.
Texto completo da fonteAl-Haik, M., C. C. Luhrs, M. M. Reda Taha, A. K. Roy, L. Dai, J. Phillips e S. Doorn. "Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites". Journal of Nanotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/860178.
Texto completo da fonteKlein, Johannes E. M. N., e Bernd Plietker. "Iron-catalysed carbon–carbon single bond activation". Organic & Biomolecular Chemistry 11, n.º 8 (2013): 1271. http://dx.doi.org/10.1039/c2ob27159a.
Texto completo da fonteGeng, Shu Hua, Wei Zhong Ding, Shu Qiang Guo e Xiong Gang Lu. "The Carbon Deposition during Iron Ore Reduction in Carbon Monoxide". Advanced Materials Research 625 (dezembro de 2012): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.625.243.
Texto completo da fonteDeng, Yong, Kexin Jiao e Jianliang Zhang. "Liquid structure evolution of molten iron in blast furnace hearth". Metallurgical Research & Technology 116, n.º 6 (2019): 601. http://dx.doi.org/10.1051/metal/2019035.
Texto completo da fonteNishi, Kazuki, Shuhei Inoue e Yukihiko Matsumura. "Molecular Dynamics Observation of Iron–Carbon precursors of Carbon Nanotube and Development of Iron–Carbon Potential". Engineering Journal 17, n.º 5 (31 de dezembro de 2013): 19–28. http://dx.doi.org/10.4186/ej.2013.17.5.19.
Texto completo da fonteStewart, J. W., J. A. Charles e E. R. Wallach. "Iron–phosphorus–carbon system: Part 3 – Metallography of low carbon iron–phosphorus alloys". Materials Science and Technology 16, n.º 3 (março de 2000): 291–303. http://dx.doi.org/10.1179/026708300101507857.
Texto completo da fonteMeyer, A., L. Hennig, F. Kargl e T. Unruh. "Iron self diffusion in liquid pure iron and iron-carbon alloys". Journal of Physics: Condensed Matter 31, n.º 39 (9 de julho de 2019): 395401. http://dx.doi.org/10.1088/1361-648x/ab2855.
Texto completo da fonteWang, Fei, Fuying Zhu, Enxiang Ren, Guofu Zhu, Guo-Ping Lu e Yamei Lin. "Recent Advances in Carbon-Based Iron Catalysts for Organic Synthesis". Nanomaterials 12, n.º 19 (3 de outubro de 2022): 3462. http://dx.doi.org/10.3390/nano12193462.
Texto completo da fonteWang, Zhongyi, Cui Wang, Jianliang Zhang, Qianwan Chen, Kexin Jiao, Xiaolei Li, Zhengjian Liu, Shanchao Gao e Ziyu Guo. "Enhanced corrosion resistance to molten iron of carbon bricks through nano-scale micropores and alumina addition". Metallurgical Research & Technology 119, n.º 3 (2022): 308. http://dx.doi.org/10.1051/metal/2022028.
Texto completo da fonteEnami, Hiroki, Toshio Nakamura, Hirotaka Oda, Tetsuya Yamada e Toshio Tsukamoto. "AMS 14C Dating of Iron Artifacts: Development and Application". Radiocarbon 46, n.º 1 (2004): 219–30. http://dx.doi.org/10.1017/s0033822200039540.
Texto completo da fonteCresswell, Richard G. "Radiocarbon Dating of Iron Artifacts". Radiocarbon 34, n.º 3 (1992): 898–905. http://dx.doi.org/10.1017/s0033822200064225.
Texto completo da fonteSantos, Dener Martins dos, e Marcelo Breda Mourao. "High-temperature reduction of iron oxides by solid carbon or carbon dissolved in liquid iron-carbon alloy". Scandinavian Journal of Metallurgy 33, n.º 4 (agosto de 2004): 229–35. http://dx.doi.org/10.1111/j.1600-0692.2004.00689.x.
Texto completo da fonteLi, Qianqian, Rebecca E. Cooper, Carl-Eric Wegner, Martin Taubert, Nico Jehmlich, Martin von Bergen e Kirsten Küsel. "Insights into Autotrophic Activities and Carbon Flow in Iron-Rich Pelagic Aggregates (Iron Snow)". Microorganisms 9, n.º 7 (23 de junho de 2021): 1368. http://dx.doi.org/10.3390/microorganisms9071368.
Texto completo da fonteKosdauletov, N., e V. E. Roshchin. "Definition of conditions of selective iron reduction from iron-manganese ore". Izvestiya. Ferrous Metallurgy 63, n.º 11-12 (3 de janeiro de 2021): 952–59. http://dx.doi.org/10.17073/0368-0797-2020-11-12-952-959.
Texto completo da fonteKosdauletov, N., e V. E. Roshchin. "Definition of conditions of selective iron reduction from iron-manganese ore". Izvestiya. Ferrous Metallurgy 63, n.º 11-12 (3 de janeiro de 2021): 952–59. http://dx.doi.org/10.17073/0368-0797-2020-11-12-952-959.
Texto completo da fonteHuo, Junping, Huaihe Song, Xiaohong Chen e Bin Cheng. "From Carbon-Encapsulated Iron Nanorods to Carbon Nanotubes". Journal of Physical Chemistry C 112, n.º 15 (abril de 2008): 5835–39. http://dx.doi.org/10.1021/jp711792x.
Texto completo da fontePełech, Iwona. "Preparation of carbon nanotubes using cvd CVD method". Polish Journal of Chemical Technology 12, n.º 3 (1 de janeiro de 2010): 45–49. http://dx.doi.org/10.2478/v10026-010-0033-y.
Texto completo da fonteWang, Han, Tianbei Wang, Weigang Wang e Yue Yuan. "Enhancing Rural Surface Water Remediation with Iron–Carbon Microelectrolysis-Strengthened Ecological Floating Beds". Sustainability 16, n.º 17 (28 de agosto de 2024): 7417. http://dx.doi.org/10.3390/su16177417.
Texto completo da fonteLiu, Yuan Chao, Jun Tie Che e Jing Hao Ren. "Influence of Carbon Source for Carbon Nanotubes Synthesis from Controllable Flame". Advanced Materials Research 1048 (outubro de 2014): 410–13. http://dx.doi.org/10.4028/www.scientific.net/amr.1048.410.
Texto completo da fonteGong, Wen Bang, Li Luo, Guo Dong Chen e Gang Yu Xiang. "Derivation and Application for Calculation of Carbon Content in Austenitizing of Cast Iron". Materials Science Forum 704-705 (dezembro de 2011): 11–15. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.11.
Texto completo da fonteSherby, Oleg D., J. Wadsworth, D. R. Lesuer e C. K. Syn. "Structure and Hardness of Martensite in Quenched Fe-C Steels". Materials Science Forum 638-642 (janeiro de 2010): 160–67. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.160.
Texto completo da fonteChen, Jin, e Hai Yan Zhang. "Peparation and Magnetic Propriety of Carbon-Coated Iron Magnetic Nanoparticles by Starch Coating Method". Applied Mechanics and Materials 164 (abril de 2012): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amm.164.17.
Texto completo da fonteSunda, W. G. "Iron and the Carbon Pump". Science 327, n.º 5966 (4 de fevereiro de 2010): 654–55. http://dx.doi.org/10.1126/science.1186151.
Texto completo da fonteChristen, Kris. "Linking iron with carbon sequestration". Environmental Science & Technology 35, n.º 5 (março de 2001): 98A—99A. http://dx.doi.org/10.1021/es012288d.
Texto completo da fontePrakash, U., e G. Sauthoff. "Machinable iron aluminides containing carbon". Scripta Materialia 44, n.º 1 (janeiro de 2001): 73–78. http://dx.doi.org/10.1016/s1359-6462(00)00583-2.
Texto completo da fonteMcLellan, R. B., e M. L. Wasz. "Carbon diffusivity in B.C.C. iron". Journal of Physics and Chemistry of Solids 54, n.º 5 (maio de 1993): 583–86. http://dx.doi.org/10.1016/0022-3697(93)90236-k.
Texto completo da fonteGulyaev, A. P. "On the iron-carbon diagram". Metal Science and Heat Treatment 32, n.º 7 (julho de 1990): 493–94. http://dx.doi.org/10.1007/bf00700317.
Texto completo da fonteGroot, C. K., A. M. van Der Kraan, V. H. J. De Beer e R. Prins. "Carbon-Supported Iron Sulfide Catalysts". Bulletin des Sociétés Chimiques Belges 93, n.º 8-9 (1 de setembro de 2010): 707–18. http://dx.doi.org/10.1002/bscb.19840930812.
Texto completo da fonteKim, Hansoo, e Wolfgang Sigmund. "Iron particles in carbon nanotubes". Carbon 43, n.º 8 (julho de 2005): 1743–48. http://dx.doi.org/10.1016/j.carbon.2005.02.019.
Texto completo da fonteSATO, Akira, Goro ARAGANE, Kazushige KAMIHIRA e Shiro YOSHIMATSU. "Reducing Rates of Molten Iron Oxide by Solid Carbon or Carbon in Molten Iron". Transactions of the Iron and Steel Institute of Japan 27, n.º 10 (1987): 789–96. http://dx.doi.org/10.2355/isijinternational1966.27.789.
Texto completo da fonteStewart, J. W., J. A. Charles e E. R. Wallach. "Iron–phosphorus–carbon system: Part 1 – Mechanical properties of low carbon iron–phosphorus alloys". Materials Science and Technology 16, n.º 3 (março de 2000): 275–82. http://dx.doi.org/10.1179/026708300101507839.
Texto completo da fonteLiu, Suwen, e Rudolf J. Wehmschulte. "A novel hybrid of carbon nanotubes/iron nanoparticles: iron-filled nodule-containing carbon nanotubes". Carbon 43, n.º 7 (junho de 2005): 1550–55. http://dx.doi.org/10.1016/j.carbon.2005.02.002.
Texto completo da fonteÁlvarez, Patricia, Juan Sutil, Rosa Menéndez e Marcos Granda. "Matrix-Iron Interactions in Carbon-Embedded Iron Oxide Nanoparticles". Journal of Nanoscience and Nanotechnology 9, n.º 7 (1 de julho de 2009): 4098–102. http://dx.doi.org/10.1166/jnn.2009.m16.
Texto completo da fonteOhtsuka, Y., T. Watanabe, Y. Nishiyama, M. Matsuda e H. Yokoi. "Iron dispersed carbon composites formed from iron-polyvinylalcohol complexes". Journal of Materials Science 29, n.º 4 (fevereiro de 1994): 877–82. http://dx.doi.org/10.1007/bf00351405.
Texto completo da fonteSanaee, M. Reza, e Enric Bertran. "Synthesis of Carbon Encapsulated Mono- and Multi-Iron Nanoparticles". Journal of Nanomaterials 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/450183.
Texto completo da fonteJin, Yaming, Huifang Xu e Abhaya K. Datye. "Electron Energy Loss Spectroscopy (EELS) of Iron Fischer–Tropsch Catalysts". Microscopy and Microanalysis 12, n.º 2 (10 de março de 2006): 124–34. http://dx.doi.org/10.1017/s1431927606060144.
Texto completo da fonteZulkania, Ariany, Rochmadi Rochmadi, Rochim Bakti Cahyono e Muslikhin Hidayat. "Investigation into Biomass Tar-Based Carbon Deposits as Reduction Agents on Iron Ore Using the Tar Impregnation Method". Metals 11, n.º 10 (13 de outubro de 2021): 1623. http://dx.doi.org/10.3390/met11101623.
Texto completo da fonteZulkania, Ariany, Rochmadi Rochmadi, Rochim Bakti Cahyono e Muslikhin Hidayat. "Investigation into Biomass Tar-Based Carbon Deposits as Reduction Agents on Iron Ore Using the Tar Impregnation Method". Metals 11, n.º 10 (13 de outubro de 2021): 1623. http://dx.doi.org/10.3390/met11101623.
Texto completo da fonteChen, Jin, Hai Yan Zhang e Li Ping Li. "The Targeting Magnetic Induction Heating of Nano-Carbon Iron Composite". Materials Science Forum 610-613 (janeiro de 2009): 1284–89. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.1284.
Texto completo da fonteDeng, Yong, Kuo Yao, Ran Liu, Yanjia Gao e Laixin Wang. "Interfacial reaction behavior in blast furnace and analysis of influence mechanism". Metallurgical Research & Technology 121, n.º 5 (2024): 509. http://dx.doi.org/10.1051/metal/2024059.
Texto completo da fonteMarukovich, E. I., V. Yu Stetsenko e A. V. Stetsenko. "Nanostructural crystallization of cast iron". Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), n.º 1 (12 de março de 2022): 37–39. http://dx.doi.org/10.21122/1683-6065-2022-1-37-39.
Texto completo da fonteLee, Heon, Sung Hoon Park, Sun-Jae Kim, Young-Kwon Park, Kay-Hyeok An, Byung-Joo Kim e Sang-Chul Jung. "Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/132032.
Texto completo da fonte