Literatura científica selecionada sobre o tema "IRM Fingerprint"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "IRM Fingerprint".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "IRM Fingerprint"
Grineviciute, Lina, Soon Hock Ng, Molong Han, Tania Moein, Vijayakumar Anand, Tomas Katkus, Meguya Ryu et al. "Anisotropy of 3D Columnar Coatings in Mid-Infrared Spectral Range". Nanomaterials 11, n.º 12 (29 de novembro de 2021): 3247. http://dx.doi.org/10.3390/nano11123247.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fonteNelke, Christopher, Marc Pawlitzki, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Corinna Preusse et al. "High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies". Cells 11, n.º 20 (21 de outubro de 2022): 3330. http://dx.doi.org/10.3390/cells11203330.
Texto completo da fontePottluarai, Bhargavi Devi, e Sharmila Kasinathan. "Thinning Algorithms Analysis Minutiae Extraction with Terminations and Bifurcation Extraction from the Single-Pixeled Thinned Biometric Image". Instrumentation Mesure Métrologie 21, n.º 6 (31 de dezembro de 2022): 225–30. http://dx.doi.org/10.18280/i2m.210603.
Texto completo da fontePawar, Vaishali, e Mukesh Zaveri. "K-Means Graph Database Clustering and Matching for Fingerprint Recognition". Intelligent Information Management 07, n.º 04 (2015): 242–51. http://dx.doi.org/10.4236/iim.2015.74019.
Texto completo da fonteTeses / dissertações sobre o assunto "IRM Fingerprint"
Coudert, Thomas. "IRM «fingerprint» et Intelligence Artificielle pour la prise en charge des patients victimes d'un AVC". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY044.
Texto completo da fonteStroke, a major cause of mortality and long-term disability worldwide, necessitates rapid and accurate diagnosis to optimize treatment outcomes. Current imaging techniques, particularly MRI, are critical for assessing the extent of brain injury and guiding therapeutic interventions. However, traditional MRI protocols are often time-consuming and may lack the precision required for detailed analysis of ischemic brain tissue, limiting their utility in acute stroke settings where time is of the essence.Magnetic Resonance Fingerprinting (MRF) is a relatively new solution to simultaneously map several brain quantitative parameters from fast, high-resolution acquisitions using a dictionary search approach. However, its extension for microvascular (e.g. cerebral blood volume (CBV) or blood vessel diameter (R)) and brain oxygenation estimates currently relies on the injection of exogenous contrast agents (CA) that limit the clinical application and acquisition speed. In this thesis, we aimed to address these limitations by developing a novel and integrated, artificial intelligence (AI) augmented contrast-free MRF technique tailored for stroke emergencies.First, we developed and adapted standard multiparametric MRF techniques based on spoiled gradient echo MRI sequences. Using scanner artifacts corrections, dictionary compression, and subspace reconstruction, we were able to generate fast relaxometry (T1,T2) maps and standard MRI contrasts from a single MRF sequence. However, the microvascular information provided by our new multi-compartment MRF model in human volunteers suffered from a low signal-to-noise ratio.We thus focused on a new MRF sequence design based on balanced GRE sequences and their remarkable sensitivity to magnetic field inhomogeneities. After a theoretical and textit{in-silico} study on general sequences sensitivities to the Blood Oxygen Level Dependent (BOLD) effect and the impact of MRF acquisition parameters, we designed a new MRF-bSSFP sequence that simultaneously estimate relaxometry (T1,T2,T2*,M0), magnetic fields (B1,B0), and microvascular properties (CBV,R) without the need for CA injection. Using a new pipeline for MRF simulations, the proposed method was tested in a cohort of human volunteers.Our method was further refined by developing advanced reconstruction methods for high dimensional MRF acquisitions relying on low-rank models and deep neural networks. We finally used our simulation framework combined with Recurrent Neural Networks to fasten our computation times by a factor of 800 and allow the inclusion of water-diffusion effects. This approach was tested in retrospective preclinical data including healthy and stroke animals and the results suggested that additional estimates of ADC or blood oxygenation could be measured with our new bSSFP MRF sequence.After careful validation and optimization, this methodological work could provide an efficient imaging solution that aligns with the critical time constraints of acute stroke care. Our general framework for high dimensional MRF acquisitions that include microstructure effects could also be used in various other pathologies
Capítulos de livros sobre o assunto "IRM Fingerprint"
Riexinger, Günther, David J. Regina, Christoph Haar, Tobias Schmid-Schirling, Inga Landwehr, Michael Seib, Jonas Lips et al. "Traceability in Battery Production: Cell-Specific Marker-Free Identification of Electrode Segments". In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 344–53. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_32.
Texto completo da fonteYing, Cheng Zhi, Chieu Hai Leong, Liew Wen Xing Alvin e Chua Jing Yang. "Improving the Workflow of Chemical Structure Elucidation with Morgan Fingerprints and the Tanimoto Coefficient". In IRC-SET 2020, 13–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9472-4_2.
Texto completo da fonteBhat, Hilal Ahmad, Farooq Ahmad Khanday e Khurshed Ahmad Shah. "Optimal Circuit Decomposition of Reversible Quantum Gates on IBM Quantum Computers". In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 149–64. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6697-1.ch008.
Texto completo da fonteTrabalhos de conferências sobre o assunto "IRM Fingerprint"
Hassan, Hossam, HyungWon Kim e Sameh Ibrahim. "Design of Configurable CMOS Capacitive Fingerprint". In 2018 30th International Conference on Microelectronics (ICM). IEEE, 2018. http://dx.doi.org/10.1109/icm.2018.8704057.
Texto completo da fonteWang, Xuefei, Mengtao Zhu, Ruibin Zhang e Yunjie Li. "A novel radar emitter fingerprint for multiple path propagation environment". In IET International Radar Conference (IRC 2023). Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/icp.2024.1680.
Texto completo da fonteDing, Guiguang, e Rongxian Nie. "Ring Fingerprint Based on Interest Points for Video Copy Detection". In 2010 IEEE International Symposium on Multimedia (ISM). IEEE, 2010. http://dx.doi.org/10.1109/ism.2010.59.
Texto completo da fonteIbrahim, Muhammad Talal, Tariq Bashir e Ling Guan. "Robust Fingerprint Image Enhancement: An Improvement to Directional Analysis of Fingerprint Image Using Directional Gaussian Filtering and Non-subsampled Contourlet Transform". In 2008 Tenth IEEE International Symposium on Multimedia (ISM) (Formerly MSE). IEEE, 2008. http://dx.doi.org/10.1109/ism.2008.108.
Texto completo da fontePellegrino, Gaetano, Qin Lin, Christian Hammerschmidt e Sicco Verwer. "Learning behavioral fingerprints from Netflows using Timed Automata". In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017. http://dx.doi.org/10.23919/inm.2017.7987293.
Texto completo da fonteHu, Jiusong, Hongli Liu e Dawei Liu. "Toward a Dynamic K in K-Nearest Neighbor Fingerprint Indoor Positioning". In 2018 IEEE International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2018. http://dx.doi.org/10.1109/iri.2018.00054.
Texto completo da fonteArjona, Rosario, Iluminada Baturone e Santiago Sanchez-Solano. "Microelectronics implementation of directional image-based fuzzy templates for fingerprints". In 2010 22nd International Conference on Microelectronics (ICM 2010). IEEE, 2010. http://dx.doi.org/10.1109/icm.2010.5696150.
Texto completo da fonteRelatórios de organizações sobre o assunto "IRM Fingerprint"
Irudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman e Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, outubro de 2004. http://dx.doi.org/10.32747/2004.7587221.bard.
Texto completo da fonte