Siga este link para ver outros tipos de publicações sobre o tema: Iridium-catalyzed borylation.

Artigos de revistas sobre o tema "Iridium-catalyzed borylation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Iridium-catalyzed borylation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Shi, Yongjia, Qian Gao e Senmiao Xu. "Iridium-Catalyzed Asymmetric C–H Borylation Enabled by Chiral Bidentate Boryl Ligands". Synlett 30, n.º 19 (28 de outubro de 2019): 2107–12. http://dx.doi.org/10.1055/s-0039-1690225.

Texto completo da fonte
Resumo:
Asymmetric synthesis of optically pure organoboron compounds is a topic that has received a number of attentions owing to their particular importance in synthetic chemistry and drug discovery. We herein highlight recent advances in the iridium-catalyzed C–H borylation of diarylmethylamines and cyclopropanes enabled by chiral bidentate boryl ligands.1 Introduction2 Ir-Catalyzed Asymmetric C(sp2)–H Borylation of Diarylmethylamines3 Ir-Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes4 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chattopadhyay, Buddhadeb, Mirja Md Mahamudul Hassan, Md Emdadul Hoque, Sayan Dey, Saikat Guria e Brindaban Roy. "Iridium-Catalyzed Site-Selective Borylation of 8-Arylquinolines". Synthesis 53, n.º 18 (11 de maio de 2021): 3333–42. http://dx.doi.org/10.1055/a-1506-3884.

Texto completo da fonte
Resumo:
AbstractWe report a convenient method for the highly site-selective borylation of 8-arylquinoline. The reaction proceeds smoothly in the presence of a catalytic amount of [Ir(OMe)(cod)]2 and 2-phenylpyridine derived ligand using bis(pinacolato)diborane as the borylating agent. The reactions occur with high selectivity with many functional groups, providing a series of borylated 8-aryl quinolines with good to excellent yield and excellent selectivity. The borylated compounds formed in this method can be transformed into various important synthons by using known transformations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chotana, Ghayoor, Soneela Asghar, Tayyaba Shahzadi, Meshari Alazmi, Xin Gao, Abdul-Hamid Emwas, Rahman Saleem e Farhat Batool. "Iridium-Catalyzed Regioselective Borylation of Substituted Biaryls". Synthesis 50, n.º 11 (28 de março de 2018): 2211–20. http://dx.doi.org/10.1055/s-0036-1591968.

Texto completo da fonte
Resumo:
Biarylboronic esters are generally prepared by directed ortho­-metalation or by Miyaura borylation and hence rely on the presence of a directing group or pre-functionalization. In this paper, the preparation of biarylboronic esters by direct C–H borylation of biaryl substrates is reported. Sterically governed regioselectivities were observed in the borylation of appropriately substituted biaryls by using [Ir(OMe)(COD)]2 precatalyst and di-tert-butylbipyridyl ligand. The resulting biarylboronic esters were isolated in 38–98% yields. The synthesized biarylboronic esters were further successfully employed in C–O, C–Br, and C–C coupling reactions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pan, Zilong, Luhua Liu, Senmiao Xu e Zhenlu Shen. "Ligand-free iridium-catalyzed regioselective C–H borylation of indoles". RSC Advances 11, n.º 10 (2021): 5487–90. http://dx.doi.org/10.1039/d0ra10211c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Eastabrook, Andrew S., e Jonathan Sperry. "Iridium-Catalyzed Triborylation of 3-Substituted Indoles". Australian Journal of Chemistry 68, n.º 12 (2015): 1810. http://dx.doi.org/10.1071/ch15393.

Texto completo da fonte
Resumo:
Readily available 3-substituted indoles undergo a one-pot iridium-catalyzed triborylation at the C2, C5, and C7 sites. 1H NMR analysis indicates borylation at C2 and C7 occurs first (no monoborylated product is observed), with the third borylation occurring as a separate, distinct step that is sterically directed to C5 by a combination of the substituent at C3 and the boronate at C7. The resulting tetrasubstituted indoles possess a substitution pattern that is cumbersome to prepare using existing methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Da Ros, Sara, Anthony Linden, Kim K. Baldridge e Jay S. Siegel. "Boronic esters of corannulene: potential building blocks toward icosahedral supramolecules". Organic Chemistry Frontiers 2, n.º 6 (2015): 626–33. http://dx.doi.org/10.1039/c5qo00009b.

Texto completo da fonte
Resumo:
Direct iridium-catalyzed multi-borylation provides a valuable tool for the symmetric functionalization of various polycyclic aromatic hydrocarbons, inter alia, regular fivefold derivatization of corannulene.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hitosugi, Shunpei, Yuta Nakamura, Taisuke Matsuno, Waka Nakanishi e Hiroyuki Isobe. "Iridium-catalyzed direct borylation of phenacenes". Tetrahedron Letters 53, n.º 9 (fevereiro de 2012): 1180–82. http://dx.doi.org/10.1016/j.tetlet.2011.12.106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Chotana, Ghayoor A., Jose R. Montero Bastidas, Susanne L. Miller, Milton R. Smith e Robert E. Maleczka. "One-Pot Iridium Catalyzed C–H Borylation/Sonogashira Cross-Coupling: Access to Borylated Aryl Alkynes". Molecules 25, n.º 7 (10 de abril de 2020): 1754. http://dx.doi.org/10.3390/molecules25071754.

Texto completo da fonte
Resumo:
Borylated aryl alkynes have been synthesized via one-pot iridium catalyzed C–H borylation (CHB)/Sonogashira cross-coupling of aryl bromides. Direct borylation of aryl alkynes encountered problems related to the reactivity of the alkyne under CHB conditions. However, tolerance of aryl bromides to CHB made possible a subsequent Sonogashira cross-coupling to access the desired borylated aryl alkynes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ishiyama, Tatsuo, e Norio Miyaura. "Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation". Pure and Applied Chemistry 78, n.º 7 (1 de janeiro de 2006): 1369–75. http://dx.doi.org/10.1351/pac200678071369.

Texto completo da fonte
Resumo:
Direct C-H borylation of aromatic compounds catalyzed by a transition-metal complex was studied as an economical protocol for the synthesis of aromatic boron derivatives. Iridium complexes generated from Ir(I) precursors and 2,2'-bipyridine ligands efficiently catalyzed the reactions of arenes and heteroarenes with bis(pinacolato)diboron or pinacolborane to produce a variety of aryl- and heteroarylboron compounds. The catalytic cycle involves the formation of a tris(boryl)iridium(III) species and its oxidative addition to an aromatic C-H bond.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wang, Yongpeng, Mengzhu Liu, Yang Sun, Yingshuang Shang, Bo Jiang, Haibo Zhang e Zhenhua Jiang. "Aluminium borate whiskers grafted with boric acid containing poly(ether ether ketone) as a reinforcing agent for the preparation of poly(ether ether ketone) composites". RSC Advances 5, n.º 122 (2015): 100856–64. http://dx.doi.org/10.1039/c5ra19635c.

Texto completo da fonte
Resumo:
A new soluble boron-containing poly(ether ether ketone) (B-PEEK) was synthesized through iridium-catalyzed C–H borylation and grafted on the surface of aluminum borate whiskers as the coupling agent between the whiskers and PEEK matrix.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Liskey, Carl W., Xuebin Liao e John F. Hartwig. "Cyanation of Arenes via Iridium-Catalyzed Borylation". Journal of the American Chemical Society 132, n.º 33 (25 de agosto de 2010): 11389–91. http://dx.doi.org/10.1021/ja104442v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Sadler, Scott A., Hazmi Tajuddin, Ibraheem A. I. Mkhalid, Andrei S. Batsanov, David Albesa-Jove, Man Sing Cheung, Aoife C. Maxwell et al. "Iridium-catalyzed C–H borylation of pyridines". Organic & Biomolecular Chemistry 12, n.º 37 (1 de agosto de 2014): 7318. http://dx.doi.org/10.1039/c4ob01565g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liskey, Carl W., e John F. Hartwig. "Iridium-Catalyzed C–H Borylation of Cyclopropanes". Journal of the American Chemical Society 135, n.º 9 (21 de fevereiro de 2013): 3375–78. http://dx.doi.org/10.1021/ja400103p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Huang, Genping, Marcin Kalek, Rong-Zhen Liao e Fahmi Himo. "Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp3)–H borylation of chlorosilanes". Chemical Science 6, n.º 3 (2015): 1735–46. http://dx.doi.org/10.1039/c4sc01592d.

Texto completo da fonte
Resumo:
DFT calculations are used to elucidate the reaction mechanism, the role of the chlorosilyl group, and primary vs. secondary and C(sp3)–H vs. C(sp2)–H selectivity of the iridium-catalyzed borylation of chlorosilanes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Liu, Yuhua, Jipei Chen, Kangsheng Zhan, Yiqiang Shen, Hui Gao e Lingmin Yao. "Mechanistic study of the ligand controlled regioselectivity in iridium catalyzed C–H borylation of aromatic imines". RSC Advances 8, n.º 62 (2018): 35453–60. http://dx.doi.org/10.1039/c8ra07886f.

Texto completo da fonte
Resumo:
DFT calculation indicates that in iridium catalyzed C–H borylation of aromatics, the ortho selectivity is proposed to be attributed to the electron donating effect of AQ ligand, while the meta selectivity is due to steric hindrance of TMP ligand.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Tobisu, Mamoru, Takuya Igarashi e Naoto Chatani. "Iridium/N-heterocyclic carbene-catalyzed C–H borylation of arenes by diisopropylaminoborane". Beilstein Journal of Organic Chemistry 12 (7 de abril de 2016): 654–61. http://dx.doi.org/10.3762/bjoc.12.65.

Texto completo da fonte
Resumo:
Catalytic C–H borylation of arenes has been widely used in organic synthesis because it allows the introduction of a versatile boron functionality directly onto simple, unfunctionalized arenes. We report herein the use of diisopropylaminoborane as a boron source in C–H borylation of arenes. An iridium(I) complex with 1,3-dicyclohexylimidazol-2-ylidene is found to efficiently catalyze the borylation of arenes and heteroarenes. The resulting aminoborylated products can be converted to the corresponding boronic acid derivatives simply by treatment with suitable diols or diamines.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Hirano, Koji, Masahiro Miura e Wataru Miura. "Iridium-Catalyzed Site-Selective C–H Borylation of 2-Pyridones". Synthesis 49, n.º 21 (2 de março de 2017): 4745–52. http://dx.doi.org/10.1055/s-0036-1588735.

Texto completo da fonte
Resumo:
An iridium-catalyzed site-selective C–H borylation of 2-pyridones has been developed. The site selectivity is predominantly controlled by steric factors, and we can access C4, C5, and C6 C–H on the 2-pyridone ring by the judicious choice of ligand and solvent. Subsequent Suzuki–Miyaura cross-coupling of the borylated products also proceeds to form the corresponding arylated pyridones in good overall yields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Kuleshova, Olena, Sobi Asako e Laurean Ilies. "Ligand-Enabled, Iridium-Catalyzed ortho-Borylation of Fluoroarenes". ACS Catalysis 11, n.º 10 (30 de abril de 2021): 5968–73. http://dx.doi.org/10.1021/acscatal.1c01206.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Song, Shu-Yong, Yinwu Li, Zhuofeng Ke e Senmiao Xu. "Iridium-Catalyzed Enantioselective C–H Borylation of Diarylphosphinates". ACS Catalysis 11, n.º 21 (21 de outubro de 2021): 13445–51. http://dx.doi.org/10.1021/acscatal.1c03888.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Robbins, Daniel W., Timothy A. Boebel e John F. Hartwig. "Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles". Journal of the American Chemical Society 132, n.º 12 (31 de março de 2010): 4068–69. http://dx.doi.org/10.1021/ja1006405.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Liskey, Carl W., e John F. Hartwig. "ChemInform Abstract: Iridium-Catalyzed C-H Borylation of Cyclopropanes." ChemInform 44, n.º 34 (1 de agosto de 2013): no. http://dx.doi.org/10.1002/chin.201334177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Steel, Patrick G., e et al et al. "ChemInform Abstract: Iridium-Catalyzed C-H Borylation of Pyridines." ChemInform 46, n.º 9 (16 de fevereiro de 2015): no. http://dx.doi.org/10.1002/chin.201509190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Liskey, Carl W., Xuebin Liao e John F. Hartwig. "ChemInform Abstract: Cyanation of Arenes via Iridium-Catalyzed Borylation." ChemInform 42, n.º 4 (30 de dezembro de 2010): no. http://dx.doi.org/10.1002/chin.201104045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Mamlouk, Hind, Jakkrit Suriboot, Praveen Kumar Manyam, Ahmed AlYazidi, David E. Bergbreiter e Sherzod T. Madrahimov. "Highly active, separable and recyclable bipyridine iridium catalysts for C–H borylation reactions". Catalysis Science & Technology 8, n.º 1 (2018): 124–27. http://dx.doi.org/10.1039/c7cy01641g.

Texto completo da fonte
Resumo:
Iridium complexes generated from Ir(i) precursors and PIB oligomer functionalized bpy ligands efficiently catalyzed the reaction of arenes with bis(pinacolato)diboron under mild conditions to produce a variety of arylboronate compounds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Maegawa, Yoshifumi, e Shinji Inagaki. "Iridium–bipyridine periodic mesoporous organosilica catalyzed direct C–H borylation using a pinacolborane". Dalton Transactions 44, n.º 29 (2015): 13007–16. http://dx.doi.org/10.1039/c5dt00239g.

Texto completo da fonte
Resumo:
Iridium complex fixed on periodic mesoporous organosilica containing bipyridine ligands within a framework showed efficient heterogeneous catalysis for direct C–H borylation of arenes and heteroarenes in combination with an inexpensive pinacolborane.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Chotana, Ghayoor, Tayyaba Shahzadi e Rahman Saleem. "Facile Synthesis of Halogen Decorated para-/meta-Hydroxy­benzoates by Iridium-Catalyzed Borylation and Oxidation". Synthesis 50, n.º 21 (9 de agosto de 2018): 4336–42. http://dx.doi.org/10.1055/s-0037-1610538.

Texto completo da fonte
Resumo:
Hydroxybenzoates are an important class of phenols that are widely used as preservatives and antiseptics in the food and pharmaceutical industries. In this report, a facile preparation of 2,6- and 2,3-disubstituted 4/5-hydroxybenzoates by iridium-catalyzed borylation of respective disubstituted benzoate esters followed by oxidation is described. This synthetic route allows for the incorporation of halogens in the final hydroxybenzoates with substitution patterns not readily accessible by the traditional routes of aromatic functionalization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Sasaki, Ikuo, Tatsunosuke Amou, Hajime Ito e Tatsuo Ishiyama. "Iridium-catalyzed ortho-C–H borylation of aromatic aldimines derived from pentafluoroaniline with bis(pinacolate)diboron". Org. Biomol. Chem. 12, n.º 13 (2014): 2041–44. http://dx.doi.org/10.1039/c3ob42497a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Harrisson, Peter, James Morris, Todd B. Marder e Patrick G. Steel. "Microwave-Accelerated Iridium-Catalyzed Borylation of Aromatic C−H Bonds". Organic Letters 11, n.º 16 (20 de agosto de 2009): 3586–89. http://dx.doi.org/10.1021/ol901306m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Chen, Lili, Yuhuan Yang, Luhua Liu, Qian Gao e Senmiao Xu. "Iridium-Catalyzed Enantioselective α-C(sp3)–H Borylation of Azacycles". Journal of the American Chemical Society 142, n.º 28 (29 de junho de 2020): 12062–68. http://dx.doi.org/10.1021/jacs.0c06756.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Wang, Christy, e Jonathan Sperry. "Iridium-Catalyzed C–H Borylation-Based Synthesis of Natural Indolequinones". Journal of Organic Chemistry 77, n.º 6 (6 de março de 2012): 2584–87. http://dx.doi.org/10.1021/jo300330u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Chen, Xiang, Lili Chen, Hongliang Zhao, Qian Gao, Zhenlu Shen e Senmiao Xu. "Iridium‐Catalyzed Enantioselective C(sp 3 )–H Borylation of Cyclobutanes". Chinese Journal of Chemistry 38, n.º 12 (8 de setembro de 2020): 1533–37. http://dx.doi.org/10.1002/cjoc.202000240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Diesendruck, Charles E., Gabrielle Rubin, Jeffery A. Bertke, Danielle L. Gray e Jeffrey S. Moore. "Crystal structure of 1,3-bis(2,3-dimethylquinoxalin-6-yl)benzene". Acta Crystallographica Section E Crystallographic Communications 71, n.º 12 (4 de novembro de 2015): 1429–32. http://dx.doi.org/10.1107/s2056989015020435.

Texto completo da fonte
Resumo:
The title compound, C26H22N4(I), was synthesized by C—H iridium-catalyzed borylation followed by Suzuki coupling. The molecular structure of (I) consists of a central benzene ring with 3-dimethylquinoxalin-6-yl groups at the 1 and 3 positions. These 2,3-dimethylquinoxalin-6-yl groups twist significantly out of the plane of the benzene ring. There are intermolecular π–π interactions which result in a two-dimensional extended structure. The layers extend parallel to theabplane and stack along thecaxis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sperry, Jonathan, e Andrew Eastabrook. "Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by Iridium­-Catalyzed C–H Borylation". Synthesis 49, n.º 21 (8 de maio de 2017): 4731–37. http://dx.doi.org/10.1055/s-0036-1589018.

Texto completo da fonte
Resumo:
A one-pot conversion of 3-substituted indoles into their 5,7-diboryl derivatives is reported. The simultaneous functionalization of the C5-H and C7-H sites is achieved using an iridium-catalyzed triborylation-protodeborylation sequence. The 5,7-diborylindoles are useful intermediates that can be readily derivatized into a variety of indoles possessing the rare 3,5,7-trisubstitution pattern, including the natural product (+)-plakohypaphorine C.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Nagase, Mai, Kenta Kato, Akiko Yagi, Yasutomo Segawa e Kenichiro Itami. "Six-fold C–H borylation of hexa-peri-hexabenzocoronene". Beilstein Journal of Organic Chemistry 16 (13 de março de 2020): 391–97. http://dx.doi.org/10.3762/bjoc.16.37.

Texto completo da fonte
Resumo:
Hexa-peri-hexabenzocoronene (HBC) is known to be a poorly soluble polycyclic aromatic hydrocarbon for which direct functionalization methods have been very limited. Herein, the synthesis of hexaborylated HBC from unsubstituted HBC is described. Iridium-catalyzed six-fold C–H borylation of HBC was successfully achieved by screening solvents. The crystal structure of hexaborylated HBC was confirmed via X-ray crystallography. Optoelectronic properties of the thus-obtained hexaborylated HBC were analyzed with the support of density functional theory calculations. The spectra revealed a bathochromic shift of absorption bands compared with unsubstituted HBC under the effect of the σ-donation of boryl groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Liu, Luhua, Rongrong Du e Senmiao Xu. "Ligand-Free Iridium-Catalyzed Borylation of Secondary Benzylic C—H Bonds". Chinese Journal of Organic Chemistry 41, n.º 4 (2021): 1572. http://dx.doi.org/10.6023/cjoc202101009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Murphy, Jaclyn M., Xuebin Liao e John F. Hartwig. "Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation". Journal of the American Chemical Society 129, n.º 50 (dezembro de 2007): 15434–35. http://dx.doi.org/10.1021/ja076498n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Larsen, Matthew A., Seung Hwan Cho e John Hartwig. "Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C–H Bonds". Journal of the American Chemical Society 138, n.º 3 (15 de janeiro de 2016): 762–65. http://dx.doi.org/10.1021/jacs.5b12153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Liskey, Carl W., e John F. Hartwig. "Iridium-Catalyzed Borylation of Secondary C–H Bonds in Cyclic Ethers". Journal of the American Chemical Society 134, n.º 30 (20 de julho de 2012): 12422–25. http://dx.doi.org/10.1021/ja305596v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Sadler, Scott A., Andrew C. Hones, Bryan Roberts, David Blakemore, Todd B. Marder e Patrick G. Steel. "Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C–H Borylation". Journal of Organic Chemistry 80, n.º 10 (maio de 2015): 5308–14. http://dx.doi.org/10.1021/acs.joc.5b00452.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Reyes, Ronald L., Tomohiro Iwai, Satoshi Maeda e Masaya Sawamura. "Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)–H Bonds". Journal of the American Chemical Society 141, n.º 17 (15 de abril de 2019): 6817–21. http://dx.doi.org/10.1021/jacs.9b01952.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Roering, Andrew J., Lillian V. A. Hale, Phillip A. Squier, Marissa A. Ringgold, Emily R. Wiederspan e Timothy B. Clark. "Iridium-Catalyzed, Substrate-Directed C–H Borylation Reactions of Benzylic Amines". Organic Letters 14, n.º 13 (25 de junho de 2012): 3558–61. http://dx.doi.org/10.1021/ol301635x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Partridge, Benjamin M., e John F. Hartwig. "Sterically Controlled Iodination of Arenes via Iridium-Catalyzed C–H Borylation". Organic Letters 15, n.º 1 (20 de dezembro de 2012): 140–43. http://dx.doi.org/10.1021/ol303164h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Robbins, Daniel W., e John F. Hartwig. "Sterically Controlled Alkylation of Arenes through Iridium-Catalyzed CH Borylation". Angewandte Chemie 125, n.º 3 (11 de dezembro de 2012): 967–71. http://dx.doi.org/10.1002/ange.201208203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Hume, Paul, Daniel P. Furkert e Margaret A. Brimble. "ChemInform Abstract: Regioselective Iridium(I)-Catalyzed Remote Borylation of Oxygenated Naphthalenes." ChemInform 43, n.º 42 (20 de setembro de 2012): no. http://dx.doi.org/10.1002/chin.201242094.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Pang, Yadong, Tatsuo Ishiyama, Koji Kubota e Hajime Ito. "Iridium(I)‐Catalyzed C−H Borylation in Air by Using Mechanochemistry". Chemistry – A European Journal 25, n.º 18 (8 de março de 2019): 4654–59. http://dx.doi.org/10.1002/chem.201900685.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Robbins, Daniel W., Timothy A. Boebel e John F. Hartwig. "ChemInform Abstract: Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles." ChemInform 41, n.º 32 (23 de julho de 2010): no. http://dx.doi.org/10.1002/chin.201032051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Robbins, Daniel W., e John F. Hartwig. "Sterically Controlled Alkylation of Arenes through Iridium-Catalyzed CH Borylation". Angewandte Chemie International Edition 52, n.º 3 (11 de dezembro de 2012): 933–37. http://dx.doi.org/10.1002/anie.201208203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kano, Haruka, Keiji Uehara, Kyohei Matsuo, Hironobu Hayashi, Hiroko Yamada e Naoki Aratani. "Direct borylation of terrylene and quaterrylene". Beilstein Journal of Organic Chemistry 16 (6 de abril de 2020): 621–27. http://dx.doi.org/10.3762/bjoc.16.58.

Texto completo da fonte
Resumo:
The preparation of large rylenes often needs the use of solubilizing groups along the rylene backbone, and all the substituents of the terrylenes and quaterrylenes were introduced before creating the rylene skeleton. In this work, we successfully synthesized 2,5,10,13-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)terrylene (TB4) by using an iridium-catalyzed direct borylation of C–H bonds in terrylene in 56% yield. The product is soluble in common organic solvents and could be purified without column chromatography. Single crystal X-ray diffraction analysis revealed that the terrylene core is not disturbed by the substituents and is perfectly flat. The photophysical properties of TB4 are also unchanged by the substituents because the carbon atoms at 2,5,10,13-positions have less coefficients on its HOMO and LUMO, estimated by theoretical calculations. Finally, the same borylation reaction was applied for quaterrylene, resulting in the formation of soluble tetra-borylated quaterrylene despite a low yield. The post modification of rylenes enables us to prepare their borylated products as versatile units after creating the rylene skeletons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Boebel, Timothy A., e John F. Hartwig. "Iridium-Catalyzed Preparation of Silylboranes by Silane Borylation and Their Use in the Catalytic Borylation of Arenes". Organometallics 27, n.º 22 (24 de novembro de 2008): 6013–19. http://dx.doi.org/10.1021/om800696d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Genov, Georgi R., James L. Douthwaite, Antti S. K. Lahdenperä, David C. Gibson e Robert J. Phipps. "Enantioselective remote C–H activation directed by a chiral cation". Science 367, n.º 6483 (12 de março de 2020): 1246–51. http://dx.doi.org/10.1126/science.aba1120.

Texto completo da fonte
Resumo:
Chiral cations have been used extensively as organocatalysts, but their application to rendering transition metal–catalyzed processes enantioselective remains rare. This is despite the success of the analogous charge-inverted strategy in which cationic metal complexes are paired with chiral anions. We report here a strategy to render a common bipyridine ligand anionic and pair its iridium complexes with a chiral cation derived from quinine. We have applied these ion-paired complexes to long-range asymmetric induction in the desymmetrization of the geminal diaryl motif, located on a carbon or phosphorus center, by enantioselective C–H borylation. In principle, numerous common classes of ligand could likewise be amenable to this approach.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia