Siga este link para ver outros tipos de publicações sobre o tema: IR photodetector.

Artigos de revistas sobre o tema "IR photodetector"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "IR photodetector".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Khurelbaatar, Zagarzusem, e Chel Jong Choi. "Graphene/Ge Schottky Junction Based IR Photodetectors". Solid State Phenomena 271 (janeiro de 2018): 133–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.271.133.

Texto completo da fonte
Resumo:
Ge p-i-n photodetectors with and without graphene on active area fabricated and investigated the graphene effects on opto-electrical properties of photodetectors. The photodetectors were characterized with respect to their dark, photocurrents and responsivities in the wavelength range between 1530-1630 nm. For a 250 um-diameter device at room temperature, it was found that dark current of p-i-n photodetector with graphene were reduced significantly compared with photodetector without graphene. This improvement is attributed to the passivation of the graphene layers that leads to the efficient light detection. Therefore, it is noted that the uniform coverage of graphene onto the Ge surface plays a significant role in advancing their opto-electrical performance of photodetector.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Boltar, K. O., I. D. Burlakov, N. I. Iakovleva, P. V. Vlasov e P. S. Lazarev. "Modern Photodetector IR-Modules". Journal of Communications Technology and Electronics 67, n.º 9 (setembro de 2022): 1175–84. http://dx.doi.org/10.1134/s1064226922090030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Esman, A. K., V. K. Kuleshov e G. L. Zykov. "Microcavity array IR photodetector". Quantum Electronics 39, n.º 12 (31 de dezembro de 2009): 1165–68. http://dx.doi.org/10.1070/qe2009v039n12abeh014148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tang, Xiaobing, Zhibiao Hao, Lai Wang, Jiadong Yu, Xun Wang, Yi Luo, Changzheng Sun et al. "Plasmon-Enhanced Hot-Electron Photodetector Based on Au/GaN-Nanopillar Arrays for Short-Wave-Infrared Detection". Applied Sciences 12, n.º 9 (23 de abril de 2022): 4277. http://dx.doi.org/10.3390/app12094277.

Texto completo da fonte
Resumo:
The complex device structure and costly preparation process have hindered the development and application of the GaN-based ultraviolet and infrared (UV–IR) dual-color photodetector. In this work, we designed and prepared an Au/GaN-nanopillar-based hot-electron photodetector that can operate in the short-wave infrared range, well below the GaN bandgap energy. A suitable Schottky barrier height was developed for a higher photo-to-dark current ratio by post-etching annealing. The surface plasmons generated by Au/GaN-nanopillar arrays could effectively improve the light absorption efficiency. As a result, compared with the planar device, the responsivity of the Au/GaN-nanopillar device could be enhanced by about two orders of magnitude. With the advantages of a simple structure and easy preparation, the proposed devices are promising candidates for application in UV–IR dual-color photodetection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Qi, Tao, Yaolun Yu, Yanyan Hu, Kangjie Li, Nan Guo e Yi Jia. "Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector". Nanomaterials 12, n.º 8 (8 de abril de 2022): 1258. http://dx.doi.org/10.3390/nano12081258.

Texto completo da fonte
Resumo:
In this research, we report on a high-performance near-infrared (near-IR) photodetector based on single-walled carbon nanotube-germanium (SWCNT-Ge) heterojunction by assembling SWCNT films onto n-type Ge substrate with ozone treatment. The ozone doping enhances the conductivity of carbon nanotube films and the formed interfacial oxide layer (GeOx) suppresses the leakage current and carriers’ recombination. The responsivity and detectivity in the near-IR region are estimated to be 362 mA W−1 and 7.22 × 1011 cm Hz1/2 W−1, respectively, which are three times the value of the untreated device. Moreover, a rapid response time of ~11 μs is obtained simultaneously. These results suggest that the simple SWCNT-Ge structure and ozone treatment method might be utilized to fabricate high-performance and low-cost near-IR photodetectors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Li, Fa Jun, Li Ying Tan e Yan Ping Zhou. "Design and Analysis InGaAs Near-IR Nanowire Photodetector for High Speed Satellite Laser Communication Application". Applied Mechanics and Materials 556-562 (maio de 2014): 5163–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.5163.

Texto completo da fonte
Resumo:
InGaAs is direct and narrow bandgap material with ultrahigh electron mobility, and is a promising candidate for optoelectronic device in the near-infrared region. The main objective of this manuscript is to design an InGaAs semiconductor-based photodetectors nanowire infrared photodetector, which would be manipulated in optical response wavelength range at room temperature with high-detective and fast-responsive performances. Considering into account mature technology in laser device and for maximizing 1.55 um optical communication performance, the design of achieved bandwidth is >1 Gbps. According to the theoretical calculations, the fundamental parameters of the InGaAs core-shell nanowire APD photodetector device are obtained, with certain values of single nanowire diameter, lateral size and applied voltage,r=100 nm,l=1 μm,Vbias=10 V. Meanwhile, we deal with the electrons mobility of the internal nanowire based on three factors, size effect, temperature and electric field effect. The results demonstrate that the InGaAs nanowire APD is potential candidatefor high rate in satellite laser communication field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Salih, A. A., W. K. Abad, S. A. Fadaam e B. H. Hussein. "Fabrication of lead oxide nanoparticles by green synthesis method for photovoltaic applications". Digest Journal of Nanomaterials and Biostructures 18, n.º 4 (30 de outubro de 2023): 1225–33. http://dx.doi.org/10.15251/djnb.2023.184.1225.

Texto completo da fonte
Resumo:
PbO NPs have been prepared by green synthesis. The diffraction patterns of α-PbO-NPs are shown by the XRD pattern, and the β-PbO-NPs have proven the tetragonal and orthorhombic structure. PbO has an optical energy gap of 4.2 eV. The FT-IR observed bond at 676 cm-1 attributed to the existence of PbO stretch. Nanoparticals with spherical and semi-spherical shapes are formed, as seen in the SEM image. The average particle size was under 100 nm. Fabrication and characterization of a high performance Ag/PbO/PSi/pSi/Ag heterojunction photodetector. The photodetector's responsivity was 0.7 A/W at 850 nm. The maximum detectivity and quantum efficiency spectra 1.009 ×1013 at 850 nm and 3×102 at 200nm which indicates that PbO NPs made using this technique have a good chance of being used to create porous silicon photodetectors with high performance heterojunctions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Muñoz, A., J. Meléndez, M. C. Torquemada, M. T. Rodrigo, J. Cebrián, A. J. de Castro, J. Meneses et al. "PbSe photodetector arrays for IR sensors". Thin Solid Films 317, n.º 1-2 (abril de 1998): 425–28. http://dx.doi.org/10.1016/s0040-6090(97)00576-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Basyooni-M. Kabatas, Mohamed A., Shrouk E. Zaki, Khalid Rahmani, Redouane En-nadir e Yasin Ramazan Eker. "Negative Photoconductivity in 2D α-MoO3/Ir Self-Powered Photodetector: Impact of Post-Annealing". Materials 16, n.º 20 (19 de outubro de 2023): 6756. http://dx.doi.org/10.3390/ma16206756.

Texto completo da fonte
Resumo:
Surface plasmon technology is regarded as having significant potential for the enhancement of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption of 2D MoO3 photodetectors. An ultrathin MoO3/Ir/SiO2/Si heterojunction Schottky self-powered photodetector is introduced here to showcase positive photoconductivity. In wafer-scale production, the initial un-annealed Mo/2 nm Ir/SiO2/Si sample displays a sheet carrier concentration of 5.76 × 1011/cm², which subsequently increases to 6.74 × 1012/cm² after annealing treatment, showing a negative photoconductivity behavior at a 0 V bias voltage. This suggests that annealing enhances the diffusion of Ir into the MoO3 layer, resulting in an increased phonon scattering probability and, consequently, an extension of the negative photoconductivity behavior. This underscores the significance of negative photoconductive devices in the realm of optoelectronic applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lu, Qin, Li Yu, Yan Liu, Jincheng Zhang, Genquan Han e Yue Hao. "Low-Noise Mid-Infrared Photodetection in BP/h-BN/Graphene van der Waals Heterojunctions". Materials 12, n.º 16 (9 de agosto de 2019): 2532. http://dx.doi.org/10.3390/ma12162532.

Texto completo da fonte
Resumo:
We present a low-noise photodetector based on van der Waals stacked black phosphorus (BP)/boron nitride (h-BN)/graphene tunneling junctions. h-BN acts as a tunneling barrier that significantly blocks dark current fluctuations induced by shallow trap centers in BP. The device provides a high photodetection performance at mid-infrared (mid-IR) wavelengths. While it was found that the photoresponsivity is similar to that in a BP photo-transistor, the noise equivalent power and thus the specific detectivity are nearly two orders of magnitude better. These exemplify an attractive platform for practical applications of long wavelength photodetection, as well as provide a new strategy for controlling flicker noise.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kamarchuk, A. V., D. A. Bauman e A. I. Marchenko. "Optimization of the profile and material of wire contacts for an IR photodetector". Journal of Physics: Conference Series 2086, n.º 1 (1 de dezembro de 2021): 012085. http://dx.doi.org/10.1088/1742-6596/2086/1/012085.

Texto completo da fonte
Resumo:
Abstract The study is devoted to the influence of the choice of geometry and materials of wire contacts on the reflection coefficient and thermal characteristics of the photodetector and the quality of the device design. The process of diffusion of materials of wire contacts and contact pads on a photodetector crystal is investigated. The studies were carried out on samples that are rather small in size (250x250x400 um). During the experiment, 4 main types of loop geometry were selected (main loop, reverse loop, double reverse loop, long loop). The loops were formed using a gold wire 25 μm in diameter. The quality of microwelds was investigated in 3 ways: shear and pull-off tests, optical observation using a scanning electron microscope (SEM), and contact resistance measurement. The aim of the work is to create a high-quality design of an IR photodetector, which allows achieving a high sensitivity (at least 0.5 A / W), a large dynamic range (at least 40 dB) and low indicators of dark current values. The developed technology ensures high quality of the photodetector design. Due to the low costs of this technological process (wire material, the number of operations required for installation), relative to other technologies, which allows maintaining high performance in the technical component of the photodetector, the installation method may be of practical interest in production.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Elsayed, Asmaa M., Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, Salem AlFaify, Mohd Shkir, Tahani A. Alrebdi, Kholoud S. Almugren, Feodor V. Kusmatsev e Mohamed Rabia. "Photodetection Enhancement via Graphene Oxide Deposition on Poly 3-Methyl Aniline". Micromachines 14, n.º 3 (6 de março de 2023): 606. http://dx.doi.org/10.3390/mi14030606.

Texto completo da fonte
Resumo:
A graphene oxide (GO)/poly 3-methyl aniline (P3MA) photodetector has been developed for light detection in a broad optical region: UV, Vis, and IR. The 3-methyl aniline was initially synthesized via radical polymerization using an acid medium, i.e., K2S2O8 oxidant. Consequently, the GO/P3MA composite was obtained through the adsorption of GO into the surface of P3MA. The chemical structure and optical properties of the prepared materials have been illustrated via XRD, FTIR, SEM, and TEM analysis. The absorbance measurements demonstrate good optical properties in the UV, Vis, and near-IR regions, although a decrease in the bandgap from 2.4 to 1.6 eV after the composite formation was located. The current density (Jph) varies between 0.29 and 0.68 mA·cm−2 (at 2.0 V) under dark and light, respectively. The photodetector has been tested using on/off chopped light at a low potential, in which the produced Jph values decrease from 0.14 to 0.04 µA·cm−2, respectively. The GO/P3MA photodetector exhibits excellent R (and D) values of 4 and 2.7 mA·W−1 (0.90 × 109 and 0.60 × 109 Jones) in the UV (340 nm) and IR (730 nm) regions, respectively. The R and D values obtained here make the prepared photodetector a promising candidate for future light detection instruments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Danh Phan Hoang. "Study of collision sensor application for vehicle with high sensitivity silicon-based metal-semiconductor IR photodetector". GSC Advanced Research and Reviews 14, n.º 3 (30 de março de 2023): 173–78. http://dx.doi.org/10.30574/gscarr.2023.14.3.0090.

Texto completo da fonte
Resumo:
In this study used the metal-semiconductor diode as IR photodetector, and through the material, device structural and operation bias selection, high response and fast switching can be achieved. The response can be improved by increasing the doping concentration of the semiconductor material. The doping concentration can be increased by varying the temperature of the semiconductor material, and the device structure can be changed to increase the response speed. The operation bias can be adjusted to produce a higher output signal. The metal-semiconductor diode can be used to detect infrared light and has a relatively low power consumption compared to other infrared photodetectors. The experiment result shown that can reach 1.294 mA/W.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Djuric, Z., e J. Piotrowski. "Room temperature IR photodetector with electromagnetic carrier depletion". Electronics Letters 26, n.º 20 (1990): 1689. http://dx.doi.org/10.1049/el:19901080.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Biswal, Gyana, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin e Serge Oktyabrsky. "Bias-Tunable Quantum Well Infrared Photodetector". Nanomaterials 14, n.º 6 (20 de março de 2024): 548. http://dx.doi.org/10.3390/nano14060548.

Texto completo da fonte
Resumo:
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Zagubisalo, P. S., e A. R. Novoselov. "Optimal Design of the Cooled IR Flip-Chip Photodetector". Optoelectronics, Instrumentation and Data Processing 58, n.º 2 (abril de 2022): 206–14. http://dx.doi.org/10.3103/s875669902202011x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Qi, Tao, Yaolun Yu, Junku Liu, Yi Jia e Dazhi Ding. "Enhanced Performance of Single-Walled Carbon Nanotube-Germanium Near-Infrared Photodetector by Doping with Au Nanoparticles". Photonics 9, n.º 9 (30 de agosto de 2022): 615. http://dx.doi.org/10.3390/photonics9090615.

Texto completo da fonte
Resumo:
This paper presents a near-infrared (near-IR) photodetector based on a gold nanoparticles-doped (AuNPs-doped), single-walled carbon nanotube–germanium (SWCNT/Ge) heterojunction. The responsivity, detectivity, and response time of the AuNPs-doped, SWCNT/Ge heterojunction photodetector measured 476 mA W−1 (a 291% improvement), 1.0 × 1012 cm Hz1/2 W−1 (a 208% improvement), and 8 μs, respectively. The mechanism of the enhanced performance originated from the surface modification by gold doping, which effectively improved the work function of the carbon nanotube films and thus increased the barrier height between the heterojunctions, as measured by the contact potential distribution (CPD) and open circuit voltage (Voc) of the SWCNT/Ge interface. In addition, we investigated the effect of various particle sizes on the performance and stability of the photodetector. The results demonstrate the promising prospects of the presented heterojunction photodetector for infrared detection applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Krivobok, V. S., A. D. Kondorskiy, D. A. Pashkeev, E. A. Ekimov, A. D. Shabrin, D. A. Litvinov, L. N. Grigoreva et al. "A Hybrid Mid-IR Photodetector Based on Semiconductor Quantum Wells". Technical Physics Letters 47, n.º 5 (maio de 2021): 388–91. http://dx.doi.org/10.1134/s1063785021040210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Djuric, Z., V. Jovic, M. Matic e Z. Jaksic. "IR photodetector with exclusion effect and self-filtering n+ layer". Electronics Letters 26, n.º 13 (1990): 929. http://dx.doi.org/10.1049/el:19900607.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Aïssa, Brahim, Atef Zekri e Said Mansour. "Responsivity Improvement of IR Photodetector by Using P3HT:PbS-QDs Nanocomposite". Microscopy and Microanalysis 29, Supplement_1 (22 de julho de 2023): 181–82. http://dx.doi.org/10.1093/micmic/ozad067.081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Yue, Dewu, Ximing Rong, Shun Han, Peijiang Cao, Yuxiang Zeng, Wangying Xu, Ming Fang, Wenjun Liu, Deliang Zhu e Youming Lu. "High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride". Membranes 11, n.º 12 (1 de dezembro de 2021): 952. http://dx.doi.org/10.3390/membranes11120952.

Texto completo da fonte
Resumo:
Black phosphorus (BP), a single elemental two-dimensional (2D) material with a sizable band gap, meets several critical material requirements in the development of future nanoelectronic applications. This work reports the ambipolar characteristics of few-layer BP, induced using 2D transparent hexagonal boron nitride (h-BN) capping. The 2D h-BN capping have several advantages over conventional Al2O3 capping in flexible and transparent 2D device applications. The h-BN capping technique was used to achieve an electron mobility in the BP devices of 73 cm2V−1s−1, thereby demonstrating n-type behavior. The ambipolar BP devices exhibited ultrafast photodetector behavior with a very high photoresponsivity of 1980 mA/W over the ultraviolet (UV), visible, and infrared (IR) spectral ranges. The h-BN capping process offers a feasible approach to fabricating n-type behavior BP semiconductors and high photoresponse BP photodetectors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Rajeswaran, Bharathi, Inyalot Jude Tadeo e Arun M. Umarji. "IR photoresponsive VO2 thin films and electrically assisted transition prepared by single-step chemical vapor deposition". Journal of Materials Chemistry C 8, n.º 36 (2020): 12543–50. http://dx.doi.org/10.1039/d0tc02785e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Moein, Tania, Darius Gailevičius, Tomas Katkus, Soon Hock Ng, Stefan Lundgaard, David J. Moss, Hamza Kurt et al. "Optically-Thin Broadband Graphene-Membrane Photodetector". Nanomaterials 10, n.º 3 (25 de fevereiro de 2020): 407. http://dx.doi.org/10.3390/nano10030407.

Texto completo da fonte
Resumo:
A broadband graphene-on-Si3N4-membrane photodetector for the visible-IR spectral range is realised by simple lithography and deposition techniques. Photo-current is produced upon illumination due to presence of the build-in potential between dissimilar metal electrodes on graphene as a result of charge transfer. The sensitivity of the photo-detector is ∼1.1 μA/W when irradiated with 515 and 1030 nm wavelengths; a smaller separation between the metal contacts favors gradient formation of the built-in electric field and increases the efficiency of charge separation. This optically-thin graphene-on-membrane photodetector and its interdigitated counterpart has the potential to be used within 3D optical elements, such as photonic crystals, sensors, and wearable electronics applications where there is a need to minimise optical losses introduced by the detector.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Umar, Z. A., R. Ahmed, H. Asghar, U. Liaqat, A. Fayyaz e M. A. Baig. "VO2 thin film based highly responsive and fast VIS/IR photodetector". Materials Chemistry and Physics 290 (outubro de 2022): 126655. http://dx.doi.org/10.1016/j.matchemphys.2022.126655.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Chahrour, Khaled M., Naser M. Ahmed, M. R. Hashim e Ahmad M. Al-Diabat. "High Responsivity IR Photodetector Based on CuO Nanorod Arrays/AAO Assembly". Procedia Chemistry 19 (2016): 311–18. http://dx.doi.org/10.1016/j.proche.2016.03.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Asar, Tarık, e Süleyman Özçelik. "Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization". Superlattices and Microstructures 88 (dezembro de 2015): 685–94. http://dx.doi.org/10.1016/j.spmi.2015.10.034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Farhoomand, Jam, e David L. Sisson. "A 1k-pixel CTIA readout multiplexer for far-IR photodetector arrays". Infrared Physics & Technology 53, n.º 6 (novembro de 2010): 450–56. http://dx.doi.org/10.1016/j.infrared.2010.09.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Basyooni-M. Kabatas, Mohamed A., Redouane En-nadir, Khalid Rahmani e Yasin Ramazan Eker. "Positive and Negative Photoconductivity in Ir Nanofilm-Coated MoO3 Bias-Switching Photodetector". Micromachines 14, n.º 10 (28 de setembro de 2023): 1860. http://dx.doi.org/10.3390/mi14101860.

Texto completo da fonte
Resumo:
In this study, we delved into the influence of Ir nanofilm coating thickness on the optical and optoelectronic behavior of ultrathin MoO3 wafer-scale devices. Notably, the 4 nm Ir coating showed a negative Hall voltage and high carrier concentration of 1.524 × 1019 cm−3 with 0.19 nm roughness. Using the Kubelka–Munk model, we found that the bandgap decreased with increasing Ir thickness, consistent with Urbach tail energy suggesting a lower level of disorder. Regarding transient photocurrent behavior, all samples exhibited high stability under both dark and UV conditions. We also observed a positive photoconductivity at bias voltages of >0.5 V, while at 0 V bias voltage, the samples displayed a negative photoconductivity behavior. This unique aspect allowed us to explore self-powered negative photodetectors, showcasing fast response and recovery times of 0.36/0.42 s at 0 V. The intriguing negative photoresponse that we observed is linked to hole self-trapping/charge exciton and Joule heating effects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Tian, Pin, Libin Tang, Jinzhong Xiang, Zhenhua Sun, Rongbin Ji, Sin Ki Lai, Shu Ping Lau et al. "Solution processable high-performance infrared organic photodetector by iodine doping". RSC Advances 6, n.º 51 (2016): 45166–71. http://dx.doi.org/10.1039/c6ra02773c.

Texto completo da fonte
Resumo:
A high-performance IR OPV detector has been fabricated, 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film thus result in the ∼11 000-fold increase in responsivity for the detector.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zhao, Xue, Ge Mu, Xin Tang e Menglu Chen. "Mid-IR Intraband Photodetectors with Colloidal Quantum Dots". Coatings 12, n.º 4 (30 de março de 2022): 467. http://dx.doi.org/10.3390/coatings12040467.

Texto completo da fonte
Resumo:
In this paper, we investigate an intraband mid-infrared photodetector based on HgSe colloidal quantum dots (CQDs). We study the size, absorption spectra, and carrier mobility of HgSe CQDs films. By regulating the time and temperature of the reaction during synthesis, we have achieved the regulation of CQDs size, and the number of electrons doped in conduction band. It is experimentally verified by the field effect transistor measurement that dark current is effectively reduced by a factor of 10 when the 1Se state is doped with two electrons compared with other doping densities. The HgSe CQDs film mobility is also measured as a function of temperature the HgSe CQDs thin film detector, which could be well fitted by Marcus Theory with a maximum of 0.046 ± 0.002 cm2/Vs at room temperature. Finally, we experimentally discuss the device performance such as photocurrent and responsivity. The responsivity reaches a maximum of 0.135 ± 0.012 A/W at liquid nitrogen temperature with a narrow band photocurrent spectrum.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Rogalski, Antoni, Małgorzata Kopytko, Weida Hu e Piotr Martyniuk. "Infrared HOT Photodetectors: Status and Outlook". Sensors 23, n.º 17 (31 de agosto de 2023): 7564. http://dx.doi.org/10.3390/s23177564.

Texto completo da fonte
Resumo:
At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Guo, Yinben, Yaogang Li, Qinghong Zhang e Hongzhi Wang. "Self-powered multifunctional UV and IR photodetector as an artificial electronic eye". Journal of Materials Chemistry C 5, n.º 6 (2017): 1436–42. http://dx.doi.org/10.1039/c6tc04771h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Alkallas, Fatemah H., Asmaa M. Elsayed, Amira Ben Gouider Trabelsi, Salem AlFaify, Mohd Shkir, Tahani A. Alrebdi, Kholoud S. Almugren, Feodor V. Kusmatsev e Mohamed Rabia. "Impact of Rolled Graphene Oxide Grown on Polyaniline for Photodetection: Future Challenging Opto-Device". Coatings 13, n.º 2 (15 de fevereiro de 2023): 437. http://dx.doi.org/10.3390/coatings13020437.

Texto completo da fonte
Resumo:
Rolled graphene oxide (roll-GO) with anew morphological properties than normal graphene is synthesized using modified Hummer. Then, the roll-GO/PANI composite is prepared through the adsorption of roll-GO on the surface of the PANI film, that performed through the oxidative polymerization method. The developed composite displays a small bandgap of 1.9 eV and shows a high optical property extends through a wide optical region from UV to IR regions. The chemical structure and function groups are confirmed using the XRD and FTIR. The roll-GO/PANI composite was investigated as a photodetector. The effects of different irradiation light conditions and the monochromatic wavelengths were tested through the measurements of the produced current density, Jph. The optical photon response exhibited excellent light sensitivity of the photodetector. The Jph enhanced highly under light (0.34 mA·cm−2) compared to dark conditions (0.007 mA·cm−2). Jph reached 0.24, 0.23, 0.14, and 0.09 mA·cm−2 under 340, 440, 540, and 730 nm, respectively. The photodetector detectivity (D) and photoresponsivity (R) are found to equal 0.45 × 109 Jones and 2.25 mA·W−1, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lee, Zhi Yin, e Sha Shiong Ng. "Fabrication and characterization of InN-based metal-semiconductor-metal infrared photodetectors prepared using sol–gel spin coated technique". Functional Materials Letters 14, n.º 05 (27 de maio de 2021): 2151024. http://dx.doi.org/10.1142/s1793604721510243.

Texto completo da fonte
Resumo:
We report on the growth and characterization of undoped indium nitride (InN) thin films grown on a silicon substrate. The InN thin films were grown on aluminium nitride (AlN) template with gallium nitride (GaN) nucleation layer using a relatively simple and low-cost sol–gel spin coating method. The crystalline structure and optical properties of the deposited films were investigated. X-ray diffraction and Raman results revealed that InN thin films with wurtzite structure were successfully grown. For InN thin film grown on a substrate with the GaN nucleation layer, its strain and dislocation density are lower than that of the substrate with the AlN nucleation layer. From the ultra-violet-visible diffuse reflectance spectrum analysis, the energy bandgap of the InN thin films with the GaN layer was 1.70 eV. The potential application of the sol–gel spin-coated InN thin films was also explored. Metal–semiconductor–metal (MSM) infrared (IR) photodetectors were fabricated by depositing the platinum contacts using two interdigitated electrodes metal mask on the samples. The finding shows that the device demonstrates good sensitivity and repeatability towards IR excitation at a wavelength of 808 nm. The photodetector characteristics at dark and photocurrent conditions such as Schottky barrier height (SBH) and ideality factor are determined. Upon exposure to the IR source at 3V applied bias, InN/AlN/Si device configuration displays rapid rise time of 0.85 s and decay time of 0.78 s, while InN/GaN/AlNSi demonstrates slow rise time of 7.45 s and decay time of 13.75 s.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lu, Jianting, Lingjiao Zhang, Churong Ma, Wenjing Huang, Qiaojue Ye, Huaxin Yi, Zhaoqiang Zheng, Guowei Yang, Chuan Liu e Jiandong Yao. "In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies". Nanoscale 14, n.º 16 (2022): 6228–38. http://dx.doi.org/10.1039/d1nr08134a.

Texto completo da fonte
Resumo:
A Te/Si heterojunction photodetector array has been in situ constructed by performing pulsed-laser deposition of a Te nanofilm on a pre-patterned 2-inch SiO2/Si wafer, exhibiting ultra-broadband photosensitivity from ultraviolet to infrared.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Malerba, Mario, Mathieu Jeannin, Stefano Pirotta, Lianhe Li, Alexander Giles Davies, Edmund Linfield, Adel Bousseksou, Jean-Michel Manceau e Raffaele Colombelli. "A “Janus” double sided mid-IR photodetector based on a MIM architecture". Applied Physics Letters 119, n.º 18 (1 de novembro de 2021): 181102. http://dx.doi.org/10.1063/5.0065591.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Dolatyari, Mahboubeh, Ali Rostami, Sanjay Mathur e Axel Klein. "UV/IR Dual-Wavelength Photodetector Design Based on ZnO/PMMA/PbSe Nanocomposites". IEEE Transactions on Nanotechnology 17, n.º 3 (maio de 2018): 574–81. http://dx.doi.org/10.1109/tnano.2018.2827201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lodari, Mario, Paolo Biagioni, Michele Ortolani, Leonetta Baldassarre, Giovanni Isella e Monica Bollani. "Plasmon-enhanced Ge-based metal-semiconductor-metal photodetector at near-IR wavelengths". Optics Express 27, n.º 15 (9 de julho de 2019): 20516. http://dx.doi.org/10.1364/oe.27.020516.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Rostami, Ali, Reza Oliaee Rezayee, Hassan Rasooli Saghai, Reza Yadipour e Hamed Baghban. "A Dual-Color IR Quantum Cascade Photodetector With Two Output Electrical Signals". IEEE Transactions on Electron Devices 58, n.º 1 (janeiro de 2011): 165–72. http://dx.doi.org/10.1109/ted.2010.2082546.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Smoczyński, Dariusz, Krzysztof Czuba, Ewa Papis-Polakowska, Paweł Kozłowski, Jacek Ratajczak, Iwona Sankowska e Agata Jasik. "The impact of mesa etching method on IR photodetector current-voltage characteristics". Materials Science in Semiconductor Processing 118 (novembro de 2020): 105219. http://dx.doi.org/10.1016/j.mssp.2020.105219.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Lackner, D., O. J. Pitts, S. Najmi, P. Sandhu, K. L. Kavanagh, A. Yang, M. Steger et al. "Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications". Journal of Crystal Growth 311, n.º 14 (julho de 2009): 3563–67. http://dx.doi.org/10.1016/j.jcrysgro.2009.04.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Fastenau, Joel M., Dmitri Lubyshev, Yueming Qiu, Amy W. K. Liu, Edwin J. Koerperick, Jon T. Olesberg e Dennis Norton. "Sb-based IR photodetector epiwafers on 100mm GaSb substrates manufactured by MBE". Infrared Physics & Technology 59 (julho de 2013): 158–62. http://dx.doi.org/10.1016/j.infrared.2012.12.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Albo, Asaf, Dan Fekete e Gad Bahir. "Unpolarized intersubband photocurrent in Te doped GaInAsN/GaAlAs quantum well IR photodetector". physica status solidi (c) 5, n.º 6 (maio de 2008): 2323–25. http://dx.doi.org/10.1002/pssc.200778741.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kohlgraf-Owens, Dana C., Sergey Sukhov, Léo Greusard, Yannick De Wilde e Aristide Dogariu. "Optically induced forces in scanning probe microscopy". Nanophotonics 3, n.º 1-2 (1 de abril de 2014): 105–16. http://dx.doi.org/10.1515/nanoph-2013-0056.

Texto completo da fonte
Resumo:
AbstractTypical measurements of light in the near-field utilize a photodetector such as a photomultiplier tube or a photodiode, which is placed remotely from the region under test. This kind of detection has many draw-backs including the necessity to detect light in the far-field, the influence of background propagating radiation, the relatively narrowband operation of photodetectors which complicates the operation over a wide wavelength range, and the difficulty in detecting radiation in the far-IR and THz. Here we review an alternative near-field light measurement technique based on the detection of optically induced forces acting on the scanning probe. This type of detection overcomes some of the above limitations, permitting true broad-band detection of light directly in the near-field with a single detector. The physical origins and the main characteristics of optical force detection are reviewed. In addition, intrinsic effects of the inherent optical forces for certain operation modalities of scanning probe microscopy are discussed. Finally, we review practical applications of optical force detection of interest for the broader field of the scanning probe microscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Et.al, DalievKhojiakbarSultanovich. "Increasing the Thermostability of Optoelectronic Devices on Semiconductor Radiators". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, n.º 3 (10 de abril de 2021): 3112–19. http://dx.doi.org/10.17762/turcomat.v12i3.1535.

Texto completo da fonte
Resumo:
The article proposes a scheme for thermal stabilization of the radiation flux of mid-IR LEDs in the temperature range + 20 ° C + 80 ° C. It is shown that the relevance of mid-IR LEDs for solving problems of gas analysis, environmental monitoring, moisture measurement and medical diagnostics. It was revealed that the guarantee of the measurement accuracy and sensitivity of optoelectronic devices is the correct spectral matching of the photodetector, LED and absorption of the investigated substance. The disadvantages of emitting diodes associated with time and temperature instability during operation are considered. A study of the spectral characteristics of mid-IR LEDs at various temperatures showed that the wavelength at the maximum the emission spectrum increases almost linearly with increasing temperature, which leads to additional errors and lowers the measurement accuracy of optoelectronic devices. A schematic diagram is proposed for stabilizing the radiation flux of mid-IR LEDs in the temperature range + 20 ° C + 80 ° C..
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Gak, V. Yu, A. V. Gadomska, M. G. Spirin, D. N. Pevtsov, A. V. Katsaba, S. B. Brichkin e V. F. Razumov. "Study of Photoelectrophysical Characteristics of IR Photodetector Based on HgTe Colloidal Quantum Dots". High Energy Chemistry 56, n.º 2 (28 de março de 2022): 91–100. http://dx.doi.org/10.1134/s0018143922020035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Asanov, S. V., A. B. Ignat’ev, V. V. Morozov, M. S. Egorov, Yu A. Rezunkov e V. V. Stepanov. "Nonlinearity and persistence of the response of IR photodetector arrays to laser radiation". Journal of Optical Technology 81, n.º 9 (1 de setembro de 2014): 531. http://dx.doi.org/10.1364/jot.81.000531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Lotfi, Hossein, Lu Li, S. M. Shazzad Rassel, Rui Q. Yang, Cédric J. Corrége, Matthew B. Johnson, Preston R. Larson e James A. Gupta. "Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature". Applied Physics Letters 109, n.º 15 (10 de outubro de 2016): 151111. http://dx.doi.org/10.1063/1.4964837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Xie, K., J. H. Zhao, Y. Shi, H. Lee e G. Olsen. "Resonant cavity enhanced GaInAsSb-AlAsSb photodetector grown by MBE for mid-IR applications". IEEE Photonics Technology Letters 8, n.º 5 (maio de 1996): 667–69. http://dx.doi.org/10.1109/68.491574.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kukushkin, V. A., D. B. Radischev, M. A. Lobaev, S. A. Bogdanov, A. V. Zdoroveischev e I. I. Chunin. "A CVD Diamond-Based Photodetector for the Visible and Near-IR Spectral Range". Technical Physics Letters 43, n.º 12 (dezembro de 2017): 1121–23. http://dx.doi.org/10.1134/s1063785017120215.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia