Artigos de revistas sobre o tema "IPSC-Derived neural models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "IPSC-Derived neural models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Amalakanti, *Sridhar, Vijaya Chandra Reddy Avula e Sachin Singh. "SYSTEMATIC REVIEW OF INDUCED PLURIPOTENT STEM CELL THERAPY IN TRAUMATIC BRAIN INJURY". International Journal of Neuropsychopharmacology 28, Supplement_1 (fevereiro de 2025): i364—i365. https://doi.org/10.1093/ijnp/pyae059.649.
Texto completo da fonteYang, Guang, Hyenjong Hong, April Torres, Kristen Malloy, Gourav Choudhury, Jeffrey Kim e Marcel Daadi. "Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage". International Journal of Molecular Sciences 19, n.º 9 (17 de setembro de 2018): 2788. http://dx.doi.org/10.3390/ijms19092788.
Texto completo da fonteSupakul, Sopak, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda e Hideyuki Okano. "Estradiol enhanced neuronal plasticity and ameliorated astrogliosis in human iPSC-derived neural models". Regenerative Therapy 25 (março de 2024): 250–63. http://dx.doi.org/10.1016/j.reth.2023.12.018.
Texto completo da fonteLiu, Sijun, Yuying Zhao, Xiaoying Su, Chengcheng Zhou, Peifen Yang, Qiusan Lin, Shijun Li et al. "Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient". Stem Cells International 2020 (18 de dezembro de 2020): 1–10. http://dx.doi.org/10.1155/2020/8897494.
Texto completo da fonteBarak, Martin, Veronika Fedorova, Veronika Pospisilova, Jan Raska, Simona Vochyanova, Jiri Sedmik, Hana Hribkova, Hana Klimova, Tereza Vanova e Dasa Bohaciakova. "Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids". Stem Cell Reviews and Reports 18, n.º 2 (fevereiro de 2022): 792–820. http://dx.doi.org/10.1007/s12015-021-10254-3.
Texto completo da fonteCostamagna, Gianluca, Giacomo Pietro Comi e Stefania Corti. "Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids". International Journal of Molecular Sciences 22, n.º 5 (6 de março de 2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Texto completo da fonteHunt, Jack F. V., Meng Li, Ryan Risgaard, Gene E. Ananiev, Scott Wildman, Fan Zhang, Tim S. Bugni, Xinyu Zhao e Anita Bhattacharyya. "High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells". Cells 11, n.º 1 (27 de dezembro de 2021): 69. http://dx.doi.org/10.3390/cells11010069.
Texto completo da fonteCsöbönyeiová, Mária, Štefan Polák e L’uboš Danišovič. "Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells". Canadian Journal of Physiology and Pharmacology 94, n.º 7 (julho de 2016): 687–94. http://dx.doi.org/10.1139/cjpp-2015-0459.
Texto completo da fonteFernández-Santiago, Rubén, e Mario Ezquerra. "Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models". Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9464591.
Texto completo da fonteTamura, Ryota, Masahiro Yo, Hiroyuki Miyoshi, Oltea Sampetrean, Hideyuki Saya, Hideyuki Okano e Masahiro Toda. "ET-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS". Neuro-Oncology Advances 4, Supplement_3 (1 de dezembro de 2022): iii4—iii5. http://dx.doi.org/10.1093/noajnl/vdac167.015.
Texto completo da fonteTamura, Ryota, Masahiro Yo, Ryotaro Imai, Hideyuki Okano e Masahiro Toda. "10000-SPE-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS". Neuro-Oncology Advances 5, Supplement_5 (1 de dezembro de 2023): v1. http://dx.doi.org/10.1093/noajnl/vdad141.002.
Texto completo da fonteKiaee, Kiavash, Yasamin A. Jodat, Nicole J. Bassous, Navneet Matharu e Su Ryon Shin. "Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models". Cells 10, n.º 12 (5 de dezembro de 2021): 3422. http://dx.doi.org/10.3390/cells10123422.
Texto completo da fonteMalankhanova, Tuyana, Lyubov Suldina, Elena Grigor’eva, Sergey Medvedev, Julia Minina, Ksenia Morozova, Elena Kiseleva, Suren Zakian e Anastasia Malakhova. "A Human Induced Pluripotent Stem Cell-Derived Isogenic Model of Huntington’s Disease Based on Neuronal Cells Has Several Relevant Phenotypic Abnormalities". Journal of Personalized Medicine 10, n.º 4 (9 de novembro de 2020): 215. http://dx.doi.org/10.3390/jpm10040215.
Texto completo da fonteMariani, Alessandro, Davide Comolli, Roberto Fanelli, Gianluigi Forloni e Massimiliano De Paola. "Neonicotinoid Pesticides Affect Developing Neurons in Experimental Mouse Models and in Human Induced Pluripotent Stem Cell (iPSC)-Derived Neural Cultures and Organoids". Cells 13, n.º 15 (31 de julho de 2024): 1295. http://dx.doi.org/10.3390/cells13151295.
Texto completo da fonteBombieri, Cristina, Andrea Corsi, Elisabetta Trabetti, Alessandra Ruggiero, Giulia Marchetto, Gaetano Vattemi, Maria Teresa Valenti, Donato Zipeto e Maria Grazia Romanelli. "Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids". International Journal of Molecular Sciences 25, n.º 2 (13 de janeiro de 2024): 1014. http://dx.doi.org/10.3390/ijms25021014.
Texto completo da fontePark, Soomin, e Jong-Chan Park. "Advancements in brain organoid models for neurodegenerative disease research". Organoid 4 (25 de dezembro de 2024): e12. https://doi.org/10.51335/organoid.2024.4.e12.
Texto completo da fonteZhao, Wen-Ning, Chialin Cheng, Kraig M. Theriault, Steven D. Sheridan, Li-Huei Tsai e Stephen J. Haggarty. "A High-Throughput Screen for Wnt/β-Catenin Signaling Pathway Modulators in Human iPSC-Derived Neural Progenitors". Journal of Biomolecular Screening 17, n.º 9 (24 de agosto de 2012): 1252–63. http://dx.doi.org/10.1177/1087057112456876.
Texto completo da fonteTsang, Victoria, Davide Danovi e Ivo Lieberam. "MODL-09. MODELLING MIGRATION OF GLIOBLASTOMA PATIENT-DERIVED CELLS USING HUMAN IPSC-DERIVED NEURAL SPHEROID AND HIGH CONTENT IMAGING". Neuro-Oncology 24, Supplement_7 (1 de novembro de 2022): vii292. http://dx.doi.org/10.1093/neuonc/noac209.1137.
Texto completo da fonteGalera-Monge, Teresa, Francisco Zurita-Díaz, Isaac Canals, Marita Grønning Hansen, Laura Rufián-Vázquez, Johannes K. Ehinger, Eskil Elmér et al. "Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons". International Journal of Molecular Sciences 21, n.º 9 (30 de abril de 2020): 3191. http://dx.doi.org/10.3390/ijms21093191.
Texto completo da fonteCastellanos-Montiel, María José, Mathilde Chaineau, Anna Kristyna Franco-Flores, Ghazal Haghi, Dulce Carrillo-Valenzuela, Wolfgang E. Reintsch, Carol X. Q. Chen e Thomas M. Durcan. "An Optimized Workflow to Generate and Characterize iPSC-Derived Motor Neuron (MN) Spheroids". Cells 12, n.º 4 (8 de fevereiro de 2023): 545. http://dx.doi.org/10.3390/cells12040545.
Texto completo da fonteTsang, V. S., I. Lieberam e D. Danovi. "P17.03.B Modelling migration of glioblastoma patient-derived cells using human iPSC-derived neural spheroid and high content analysis". Neuro-Oncology 24, Supplement_2 (1 de setembro de 2022): ii89. http://dx.doi.org/10.1093/neuonc/noac174.311.
Texto completo da fonteNayak, Ritu, Idan Rosh, Irina Kustanovich e Shani Stern. "Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems". International Journal of Molecular Sciences 22, n.º 17 (27 de agosto de 2021): 9315. http://dx.doi.org/10.3390/ijms22179315.
Texto completo da fonteMansur, Fernanda, André Luiz Teles e Silva, Ana Karolyne Santos Gomes, Juliana Magdalon, Janaina Sena de Souza, Karina Griesi-Oliveira, Maria Rita Passos-Bueno e Andréa Laurato Sertié. "Complement C4 Is Reduced in iPSC-Derived Astrocytes of Autism Spectrum Disorder Subjects". International Journal of Molecular Sciences 22, n.º 14 (15 de julho de 2021): 7579. http://dx.doi.org/10.3390/ijms22147579.
Texto completo da fonteMaussion, Gilles, Cecilia Rocha, Narges Abdian, Dimitri Yang, Julien Turk, Dulce Carrillo Valenzuela, Luisa Pimentel et al. "Transcriptional Dysregulation and Impaired Neuronal Activity in FMR1 Knock-Out and Fragile X Patients’ iPSC-Derived Models". International Journal of Molecular Sciences 24, n.º 19 (5 de outubro de 2023): 14926. http://dx.doi.org/10.3390/ijms241914926.
Texto completo da fonteCostamagna, Gianluca, Luca Andreoli, Stefania Corti e Irene Faravelli. "iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery". Cells 8, n.º 11 (14 de novembro de 2019): 1438. http://dx.doi.org/10.3390/cells8111438.
Texto completo da fonteNg, Neville S., Simon Maksour, Jeremy S. Lum, Michelle Newbery, Victoria Shephard e Lezanne Ooi. "An Optimized Direct Lysis Gene Expression Microplate Assay and Applications for Disease, Differentiation, and Pharmacological Cell-Based Studies". Biosensors 12, n.º 6 (26 de maio de 2022): 364. http://dx.doi.org/10.3390/bios12060364.
Texto completo da fonteBuijsen, Ronald A. M., Linda M. van der Graaf, Elsa C. Kuijper, Barry A. Pepers, Elena Daoutsali, Lotte Weel, Vered Raz, David A. Parfitt e Willeke M. C. van Roon-Mom. "Calcium-Enhanced Medium-Based Delivery of Splice Modulating Antisense Oligonucleotides in 2D and 3D hiPSC-Derived Neuronal Models". Biomedicines 12, n.º 9 (23 de agosto de 2024): 1933. http://dx.doi.org/10.3390/biomedicines12091933.
Texto completo da fonteDeshmukh, Rahul S., Krisztián A. Kovács e András Dinnyés. "Drug Discovery Models and Toxicity Testing Using Embryonic and Induced Pluripotent Stem-Cell-Derived Cardiac and Neuronal Cells". Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/379569.
Texto completo da fonteSong, Liqing, Yuanwei Yan, Mark Marzano e Yan Li. "Studying Heterotypic Cell–Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration". Cells 8, n.º 4 (1 de abril de 2019): 299. http://dx.doi.org/10.3390/cells8040299.
Texto completo da fonteStebbins, Matthew J., Benjamin D. Gastfriend, Scott G. Canfield, Ming-Song Lee, Drew Richards, Madeline G. Faubion, Wan-Ju Li, Richard Daneman, Sean P. Palecek e Eric V. Shusta. "Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties". Science Advances 5, n.º 3 (março de 2019): eaau7375. http://dx.doi.org/10.1126/sciadv.aau7375.
Texto completo da fonteSkinner, Kasey, Tomoyuki Koga, Shunichiro Miki, Robert F. Gruener, R. Stephanie Huang, Frank Furnari e C. Ryan Miller. "HGG-12. HUMAN IPSC-DERIVED H3.3K27M NEUROSPHERES: A NOVEL MODEL FOR INVESTIGATING DIPG PATHOGENESIS AND DRUG RESPONSE". Neuro-Oncology 23, Supplement_1 (1 de junho de 2021): i19—i20. http://dx.doi.org/10.1093/neuonc/noab090.078.
Texto completo da fonteManz, Frederik, Daniel Haag, Stefan M. Pfister e Lena Kutscher. "MEDB-22. iPSC-derived cerebellar organoid model for hereditary genetic predisposition in SHH-medulloblastoma". Neuro-Oncology 24, Supplement_1 (1 de junho de 2022): i109. http://dx.doi.org/10.1093/neuonc/noac079.396.
Texto completo da fonteCsobonyeiova, Maria, Stefan Polak e Lubos Danisovic. "Recent Overview of the Use of iPSCs Huntington’s Disease Modeling and Therapy". International Journal of Molecular Sciences 21, n.º 6 (24 de março de 2020): 2239. http://dx.doi.org/10.3390/ijms21062239.
Texto completo da fonteMcIntyre, Laura Lynn, Warren Plaisted, Ronald Coleman, Jeanne Loring, Thomas Lane e Craig M. Walsh. "Evaluating the Therapeutic Potential of Transplantation of Neural Precursor Cells for Treating the Autoimmune Disease Multiple Sclerosis". Journal of Immunology 198, n.º 1_Supplement (1 de maio de 2017): 219.1. http://dx.doi.org/10.4049/jimmunol.198.supp.219.1.
Texto completo da fonteNizzardo, Monica, Monica Bucchia, Agnese Ramirez, Elena Trombetta, Nereo Bresolin, Giacomo P. Comi e Stefania Corti. "iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models". Human Molecular Genetics 25, n.º 15 (6 de junho de 2016): 3152–63. http://dx.doi.org/10.1093/hmg/ddw163.
Texto completo da fonteJohnston, *Jenessa, Brandi Quintanilla, Peixiong Yuan, Shiyong Peng, Mani Yavi, Hector Caruncho, Bashkim Kadriu e Carlos Zarate Jr. "DIFFERENCE IN TREATMENT-RESPONSE OF IPSC-DERIVED NEURONS TO REELIN AND (2R,6R)-HNK FROM PARTICIPANTS WITH TREATMENT- RESISTANT DEPRESSION". International Journal of Neuropsychopharmacology 28, Supplement_1 (fevereiro de 2025): i327. https://doi.org/10.1093/ijnp/pyae059.583.
Texto completo da fonteFrawley, Lauren, Noam Tomer Taylor, Olivia Sivills, Ella McPhillamy, Timothy Duy To, Yibo Wu, Beek Yoke Chin e Chiew Yen Wong. "Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells". Biomedicines 13, n.º 1 (27 de dezembro de 2024): 35. https://doi.org/10.3390/biomedicines13010035.
Texto completo da fonteDe Beuckeleer, Sarah, Tim Van De Looverbosch, Johanna Van Den Daele, Peter Ponsaerts e Winnok H. De Vos. "Unbiased identification of cell identity in dense mixed neural cultures". eLife 13 (17 de janeiro de 2025). https://doi.org/10.7554/elife.95273.4.
Texto completo da fonteSarieva, Kseniia, Felix Hildebrand, Theresa Kagermeier, Zeynep Yentür, Katharina Becker e Simone Mayer. "Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment". Disease Models & Mechanisms 16, n.º 11 (1 de novembro de 2023). http://dx.doi.org/10.1242/dmm.050306.
Texto completo da fonteTomov, Martin L., Alison O’Neil, Hamdah S. Abbasi, Beth A. Cimini, Anne E. Carpenter, Lee L. Rubin e Mark Bathe. "Resolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imaging". Communications Biology 4, n.º 1 (24 de junho de 2021). http://dx.doi.org/10.1038/s42003-021-02276-x.
Texto completo da fonteStöberl, Nina, Emily Maguire, Elisa Salis, Bethany Shaw e Hazel Hall-Roberts. "Human iPSC-derived glia models for the study of neuroinflammation". Journal of Neuroinflammation 20, n.º 1 (10 de outubro de 2023). http://dx.doi.org/10.1186/s12974-023-02919-2.
Texto completo da fonteKhan, Mushfiquddin, Tajinder S. Dhammu, Mauhamad Baarine, Avtar K. Singh e Inderjit Singh. "Abstract WP113: Induced Pluripotent Stem Cells Derived Neurons Ideally Serve as a Human Stroke Model of Neuronal Damage and Neuroprotective Intervention". Stroke 48, suppl_1 (fevereiro de 2017). http://dx.doi.org/10.1161/str.48.suppl_1.wp113.
Texto completo da fonteBertucci, Taylor, Kathryn Bowles, Steven Lotz, Le Qi, Katherine Stevens, Susan K. Goderie, Susan Borden et al. "Human iPSC derived organoid models to study tau pathology". Alzheimer's & Dementia 20, S6 (dezembro de 2024). https://doi.org/10.1002/alz.087353.
Texto completo da fonteRylaarsdam, Lauren, Jennifer Rakotomamonjy, Eleanor Pope e Alicia Guemez-Gamboa. "iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity". Nature Communications 15, n.º 1 (27 de janeiro de 2024). http://dx.doi.org/10.1038/s41467-024-44989-7.
Texto completo da fonteSheu, Chia-Lin, Ullas Mony, Sihan Dai, Linhui Qiu e Vishnu Priya Veeraraghavan. "Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy". Current Stem Cell Research & Therapy 18 (8 de junho de 2023). http://dx.doi.org/10.2174/1574888x18666230608105703.
Texto completo da fonteSpathopoulou, Angeliki, Frank Edenhofer e Lisa Fellner. "Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models". Frontiers in Neurology 12 (25 de janeiro de 2022). http://dx.doi.org/10.3389/fneur.2021.786835.
Texto completo da fontePedroza, Albert J., Samantha Churovich, Nobu Yokoyama, Ken Nakamura, Cristiana Iosef Husted e Michael P. Fischbein. "Abstract 14908: Anatomic Validation of Induced Pluripotent Stem Cell-derived Aortic Smooth Muscle Cell Model of Loeys Dietz Syndrome". Circulation 142, Suppl_3 (17 de novembro de 2020). http://dx.doi.org/10.1161/circ.142.suppl_3.14908.
Texto completo da fonteGorgogietas, Vyron, Bahareh Rajaei, Chae Heeyoung, Bruno J. Santacreu, Sandra Marín-Cañas, Paraskevi Salpea, Toshiaki Sawatani et al. "GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models". Diabetologia, 30 de março de 2023. http://dx.doi.org/10.1007/s00125-023-05905-8.
Texto completo da fonteRoth, Julien G., Kristin L. Muench, Aditya Asokan, Victoria M. Mallett, Hui Gai, Yogendra Verma, Stephen Weber et al. "16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development". eLife 9 (10 de novembro de 2020). http://dx.doi.org/10.7554/elife.58178.
Texto completo da fonteCheng, Chialin, Surya A. Reis, Emily T. Adams, Daniel M. Fass, Steven P. Angus, Timothy J. Stuhlmiller, Jared Richardson et al. "High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy". Scientific Reports 11, n.º 1 (23 de agosto de 2021). http://dx.doi.org/10.1038/s41598-021-96227-5.
Texto completo da fonte