Artigos de revistas sobre o tema "Intumescen"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Intumescen".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Liu, Cong. "Flame Retardancy of Lanthanum Phosphinate in Combination with Intumescen Flame-Retardant in Polypropylene". Advanced Materials Research 490-495 (março de 2012): 3366–69. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.3366.
Texto completo da fonteYu, M. H., L. M. Pakish e J. W. Saunders. "Association of a nematode resistance bearing addition chromosome with a recurring leaf intumescence somaclonal variation in sugar beet". Genome 34, n.º 3 (1 de junho de 1991): 477–85. http://dx.doi.org/10.1139/g91-072.
Texto completo da fonteMartynov, A. V., O. V. Popova e V. V. Grekov. "Non-Standard Methods for Assessing the Quality of Intumescent Coatings". Occupational Safety in Industry, n.º 6 (junho de 2021): 15–20. http://dx.doi.org/10.24000/0409-2961-2021-6-15-20.
Texto completo da fonteMartynov, A. V., e O. V. Popova. "Methodology to Determine Expansion Rate, Strength, and Adhesion of Protective Coating Produced Based on Formed Coked Form". Occupational Safety in Industry, n.º 9 (setembro de 2024): 66–73. http://dx.doi.org/10.24000/0409-2961-2024-9-66-73.
Texto completo da fonteВахітова, Л. М., В. П. Плаван, В. І. Шологон, К. В. Калафат, Н. А. Таран e В. І. Бессарабов. "ПІДВИЩЕННЯ ВОГНЕЗАХИСНОЇ ЕФЕКТИВНОСТІ ІНТУМЕСЦЕНТНИХ ЕПОКСИДНИХ ПОКРИТТІВ СПОЛУКАМИ ІНТЕРКАЛЬОВАНОГО ГРАФІТУ". Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series 152, n.º 6 (1 de outubro de 2021): 55–65. http://dx.doi.org/10.30857/1813-6796.2020.6.5.
Texto completo da fonteJi, Yu, Qiang Yao, Weihong Cao e Yueying Zhao. "Base Promoted Intumescence of Phenols". Polymers 12, n.º 2 (23 de janeiro de 2020): 261. http://dx.doi.org/10.3390/polym12020261.
Texto completo da fonteCirstea, Nicoleta Florentina, Alina Badanoiu e Aurelian Cristian Boscornea. "Intumescent Silicate Coatings with the Addition of Alkali-Activated Materials". Polymers 14, n.º 10 (10 de maio de 2022): 1937. http://dx.doi.org/10.3390/polym14101937.
Texto completo da fonteUstinov, Andrey, Olga Zybina, Anastasia Tomakhova e Sergey Pavlov. "The enhancement of operating properties of intumescent fire-protective compositions". MATEC Web of Conferences 245 (2018): 11008. http://dx.doi.org/10.1051/matecconf/201824511008.
Texto completo da fonteVarlashkin, P. G., e M. J. D. Low. "Infrared Spectra of Intumescent Chars". Applied Spectroscopy 40, n.º 3 (março de 1986): 393–97. http://dx.doi.org/10.1366/0003702864509141.
Texto completo da fonteBourbigot, S., M. Le Bras e R. Delobel. "Fire Degradation of an Intumescent Flame Retardant Polypropylene Using the Cone Calorimeter". Journal of Fire Sciences 13, n.º 1 (janeiro de 1995): 3–22. http://dx.doi.org/10.1177/073490419501300101.
Texto completo da fonteLebedchenko, O. S., S. V. Puzach e V. I. Zykov. "The application efficiency of intumescent coatings for power cables of safety systems of nuclear power plants under fire conditions". Pozharovzryvobezopasnost/Fire and Explosion Safety 30, n.º 4 (14 de setembro de 2021): 36–47. http://dx.doi.org/10.22227/0869-7493.2021.30.04.36-47.
Texto completo da fonteHäßler, Mai, Dustin Häßler, Sascha Hothan e Simone Krüger. "Fire tests of steel tension rod systems with intumescent coating". Journal of Structural Fire Engineering 11, n.º 1 (5 de agosto de 2019): 22–32. http://dx.doi.org/10.1108/jsfe-01-2019-0005.
Texto completo da fonteUstinov, A. A., O. A. Zybina e A. V. Andreev. "On the Impact Caused by Titanium Dioxide of Different Trademarks on the Properties of Intumescent Fire-Protective Coatings". Materials Science Forum 945 (fevereiro de 2019): 212–17. http://dx.doi.org/10.4028/www.scientific.net/msf.945.212.
Texto completo da fonteKomarova, M. A., I. A. Grishin, M. V. Shalabin e N. O. Melnikov. "Development of test methods for fire-retardant coatings of steel engineering structures during operation". Bulletin of Science and Research Center of Construction 40, n.º 1 (25 de março de 2024): 21–34. http://dx.doi.org/10.37538/2224-9494-2024-1(40)-21-34.
Texto completo da fonteMohd Sabee, Mohd Meer Saddiq, Zarina Itam, Salmia Beddu, Nazirul Mubin Zahari, Nur Liyana Mohd Kamal, Daud Mohamad, Norzeity Amalin Zulkepli, Mohamad Danial Shafiq e Zuratul Ain Abdul Hamid. "Flame Retardant Coatings: Additives, Binders, and Fillers". Polymers 14, n.º 14 (17 de julho de 2022): 2911. http://dx.doi.org/10.3390/polym14142911.
Texto completo da fonteEremina, Tatiana, e Dmitry Korolchenko. "Fire Protection of Building Constructions with the Use of Fire-Retardant Intumescent Compositions". Buildings 10, n.º 10 (15 de outubro de 2020): 185. http://dx.doi.org/10.3390/buildings10100185.
Texto completo da fonteKang, Sungwook, Sengkwan Choi e Joung Yoon Choi. "Coupled thermo-physical behaviour of an inorganic intumescent system in cone calorimeter testing". Journal of Fire Sciences 35, n.º 3 (19 de abril de 2017): 207–34. http://dx.doi.org/10.1177/0734904117701765.
Texto completo da fonteChen, Sin-Nan, Pei-Kai Li, Tar-Hwa Hsieh, Ko-Shan Ho e Yu-Meng Hong. "Enhancements on Flame Resistance by Inorganic Silicate-Based Intumescent Coating Materials". Materials 14, n.º 21 (3 de novembro de 2021): 6628. http://dx.doi.org/10.3390/ma14216628.
Texto completo da fonteLuangtriratana, Piyanuch, Baljinder K. Kandola, Sophie Duquesne e Serge Bourbigot. "Quantification of Thermal Barrier Efficiency of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites". Coatings 8, n.º 10 (29 de setembro de 2018): 347. http://dx.doi.org/10.3390/coatings8100347.
Texto completo da fonteWattanatanom, Warunee, Sireerat Churuchinda e Pranut Potiyaraj. "Intumescent flame retardant finishing of polyester fabrics via the layer-by-layer assembly technique". International Journal of Clothing Science and Technology 29, n.º 1 (6 de março de 2017): 96–105. http://dx.doi.org/10.1108/ijcst-07-2015-0079.
Texto completo da fonteNicoara, Adrian Ionut, e Alina Ioana Badanoiu. "Influence of Alkali Activator Type on the Hydrolytic Stability and Intumescence of Inorganic Polymers Based on Waste Glass". Materials 15, n.º 1 (25 de dezembro de 2021): 147. http://dx.doi.org/10.3390/ma15010147.
Texto completo da fonteТаран, Н. А., К. В. Калафат, Л. І. Вахітова e В. П. Плаван. "ОПТИМІЗАЦІЯ ЕКСПЛУАТАЦІЙНИХ ВЛАСТИВОСТЕЙ ВОГНЕЗАХИСНОГО ПОЛІМЕРНОГО ІНТУМЕСЦЕНТНОГО ПОКРИТТЯ". Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series 138, n.º 5 (3 de fevereiro de 2020): 79–86. http://dx.doi.org/10.30857/1813-6796.2019.5.9.
Texto completo da fonteCamino, G., G. Martinasso, L. Costa e R. Gobetto. "Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: Part II—Intumescence step". Polymer Degradation and Stability 28, n.º 1 (janeiro de 1990): 17–38. http://dx.doi.org/10.1016/0141-3910(90)90049-d.
Texto completo da fonteDepeng, Li, Li Chixiang, Jiang Xiulei, Liu Tao e Zhao Ling. "Synergistic effects of intumescent flame retardant and nano-CaCO3 on foamability and flame-retardant property of polypropylene composites foams". Journal of Cellular Plastics 54, n.º 3 (12 de julho de 2017): 615–31. http://dx.doi.org/10.1177/0021955x17720157.
Texto completo da fonteMelder, Egor V., Sergey V. Puzach e Andrey B. Sivenkov. "Toxicity of thermolysis products and smoke-generating ability of fire-proof intumescent coatings for steel structures". Fire and Emergencies: prevention, elimination 3 (2023): 15–24. http://dx.doi.org/10.25257/fe.2023.3.15-24.
Texto completo da fonteChico, B., A. López-Delgado, M. A. Lobo, D. De la Fuente, J. G. Castaño, F. A. López e M. Morcillo. "Degradación atmosférica de un recubrimiento de pintura intumescente". Boletín de la Sociedad Española de Cerámica y Vidrio 43, n.º 2 (30 de abril de 2004): 216–19. http://dx.doi.org/10.3989/cyv.2004.v43.i2.506.
Texto completo da fonteVAKHITOVA, LIUBOV, KONSTANTIN KALAFAT, NADIYA TARAN e VOLODYMYR BESSARABOV. "ПОРІВНЯННЯ АМІНІВ ЯК ГАЗОУТВОРЮВАЧІВ ВОГНЕЗАХИСНИХ КОМПОЗИЦІЙ ІНТУМЕСЦЕНТНОГО ТИПУ". Technologies and Engineering, n.º 4 (4 de janeiro de 2022): 69–80. http://dx.doi.org/10.30857/2786-5371.2021.4.7.
Texto completo da fonteLi, Yang, Cheng-Fei Cao, Zuan-Yu Chen, Shuai-Chi Liu, Joonho Bae e Long-Cheng Tang. "Waterborne Intumescent Fire-Retardant Polymer Composite Coatings: A Review". Polymers 16, n.º 16 (20 de agosto de 2024): 2353. http://dx.doi.org/10.3390/polym16162353.
Texto completo da fonteLe Bras, Michel, Serge Bourbigot, Yannick Le Tallec e Jacky Laureyns. "Synergy in intumescence—application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations". Polymer Degradation and Stability 56, n.º 1 (abril de 1997): 11–21. http://dx.doi.org/10.1016/s0141-3910(96)00190-5.
Texto completo da fonteDuquesne, S., S. Magnet, C. Jama e R. Delobel. "Thermoplastic resins for thin film intumescent coatings – towards a better understanding of their effect on intumescence efficiency". Polymer Degradation and Stability 88, n.º 1 (abril de 2005): 63–69. http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.026.
Texto completo da fonteMARTYNOV, A., V. GREKOV e O. POPOVA. "MEASURING TOOL KIT FOR EXPRESS ANALYSIS OF INTUMESCENT FIRE PROTECTION AT A CONSTRUCTION FACILITY". Fire and Emergencies: prevention, elimination 3 (2021): 61–68. http://dx.doi.org/10.25257/fe.2021.3.61-68.
Texto completo da fonteAlmeras, X., M. Le Bras, S. Bourbigot, P. Hornsby, G. Marosi, P. Anna e F. Poutch. "Intumescent PP Blends". Polymers and Polymer Composites 11, n.º 8 (novembro de 2003): 691–702. http://dx.doi.org/10.1177/096739110301100808.
Texto completo da fonteVasilchenko, Alexey, Yuriy Otrosh, Nikolay Adamenko, Evgeny Doronin e Andrey Kovalov. "Feature of fire resistance calculation of steel structures with intumescent coating". MATEC Web of Conferences 230 (2018): 02036. http://dx.doi.org/10.1051/matecconf/201823002036.
Texto completo da fonteAndryushkin, А. Yu, A. A. Kirshina e E. N. Kadochnikova. "The evaluation of the fire-retardant efficiency of intumescent coatings of steel structures exposed to high-temperature gas flows". Pozharovzryvobezopasnost/Fire and Explosion Safety 30, n.º 4 (14 de setembro de 2021): 14–26. http://dx.doi.org/10.22227/0869-7493.2021.30.04.14-26.
Texto completo da fonteCayla, Aurélie, François Rault, Stéphane Giraud, Fabien Salaün, Rodolphe Sonnier e Loïc Dumazert. "Influence of Ammonium Polyphosphate/Lignin Ratio on Thermal and Fire Behavior of Biobased Thermoplastic: The Case of Polyamide 11". Materials 12, n.º 7 (8 de abril de 2019): 1146. http://dx.doi.org/10.3390/ma12071146.
Texto completo da fonteWang, Feiyue, Jiahao Liao, Long Yan e Mengtao Cai. "Facile Construction of Polypyrrole Microencapsulated Melamine-Coated Ammonium Polyphosphate to Simultaneously Reduce Flammability and Smoke Release of Epoxy Resin". Polymers 14, n.º 12 (12 de junho de 2022): 2375. http://dx.doi.org/10.3390/polym14122375.
Texto completo da fonteKang, Jiyuan, Fumiaki Takahashi e James S. T’ien. "In situ thermal-conductivity measurements and morphological characterization of intumescent coatings for fire protection". Journal of Fire Sciences 36, n.º 5 (16 de agosto de 2018): 419–37. http://dx.doi.org/10.1177/0734904118794955.
Texto completo da fonteLi, GQ, Jun Han e Yong C. Wang. "Constant effective thermal conductivity of intumescent coatings: Analysis of experimental results". Journal of Fire Sciences 35, n.º 2 (1 de fevereiro de 2017): 132–55. http://dx.doi.org/10.1177/0734904117693857.
Texto completo da fonteVAKHITOVA, LIUBOV, KONSTANTIN KALAFAT, NADIYA TARAN e VOLODYMYR BESSARABOV. "ПОРІВНЯННЯ ПОЛІОЛІВ ЯК КАРБОНІЗУЮЧИХ АГЕНТІВ ВОГНЕЗАХИСНИХ КОМПОЗИЦІЙ ІНТУМЕСЦЕНТНОГО ТИПУ". Technologies and Engineering, n.º 6 (10 de janeiro de 2022): 27–36. http://dx.doi.org/10.30857/2786-5371.2021.6.3.
Texto completo da fontePuzach, S. V., O. S. Lebedchenko, V. I. Zykov e T. I. Chistyakov. "Operability evaluation of electrical wires and cables subjected to simultaneous fire and current loadings". Pozharovzryvobezopasnost/Fire and Explosion Safety 31, n.º 6 (2 de fevereiro de 2023): 56–67. http://dx.doi.org/10.22227/0869-7493.2022.31.06.56-67.
Texto completo da fonteÇırpıcı, Burak Kaan, Süleyman Nazif Orhan e Türkay Kotan. "Numerical modelling of heat transfer through protected composite structural members". Challenge Journal of Structural Mechanics 5, n.º 3 (11 de setembro de 2019): 96. http://dx.doi.org/10.20528/cjsmec.2019.03.003.
Texto completo da fonteДмитрієв, Сергій, e Яков Гриценко. "Femtosecond laser LenSx–assisted phacoemulsification of mature intumescent cataract". Oftalmologicheskii Zhurnal, n.º 5 (1 de novembro de 2023): 11–15. http://dx.doi.org/10.31288/oftalmolzh202351115.
Texto completo da fonteSivasamy, Palanichamy, Bashyam Geetha, Chinnaswamy Thangavel Vijayakumar e Johannes Karl Fink. "Structural Basis for Intumescence—Part II: Synthesis and Characterization of Intumescent Polymers Containing Spirophosphorus Moiety in the Backbone". Polymer-Plastics Technology and Engineering 46, n.º 9 (3 de setembro de 2007): 919–25. http://dx.doi.org/10.1080/03602550701280398.
Texto completo da fonteSivasamy, Palanichamy, Bashyam Geetha, Chinnaswamy Thangavel Vijayakumar e Johannes Karl Fink. "Structural Basis for Intumescence – Part III – Thermal Degradation Study of Intumescent Polymers Containing Spirophosphorus Moiety in the Backbone". Polymer-Plastics Technology and Engineering 49, n.º 3 (29 de janeiro de 2010): 316–24. http://dx.doi.org/10.1080/03602550903285526.
Texto completo da fonteHussain, Atif, Véronic Landry, Pierre Blanchet, Doan-Trang Hoang e Christian Dagenais. "Fire Performance of Intumescent Waterborne Coatings with Encapsulated APP for Wood Constructions". Coatings 11, n.º 11 (20 de outubro de 2021): 1272. http://dx.doi.org/10.3390/coatings11111272.
Texto completo da fonteBhoite, Sangram P., Jonghyuck Kim, Wan Jo, Pravin H. Bhoite, Sawanta S. Mali, Kyu-Hwan Park e Chang-Kook Hong. "Expanded Polystyrene Beads Coated with Intumescent Flame Retardant Material to Achieve Fire Safety Standards". Polymers 13, n.º 16 (10 de agosto de 2021): 2662. http://dx.doi.org/10.3390/polym13162662.
Texto completo da fonteZhang, Jianping, Michael Delichatsios, Maurice McKee, Sebastian Ukleja e Claudio Pagella. "Experimental study of burning behaviors of intumescent coatings and nanoparticles applied on flaxboard". Journal of Fire Sciences 29, n.º 6 (20 de julho de 2011): 519–30. http://dx.doi.org/10.1177/0734904111410934.
Texto completo da fonteGillani, Qandeel Fatima, Faiz Ahmad, Mohamed Ibrahim Abdul Mutalib e Ezza Syahera. "Thermal Degradation and Char Morphology of HNTs Reinforced Epoxy Based Intumescent Fire Retardant Coatings". Key Engineering Materials 701 (julho de 2016): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.701.83.
Texto completo da fonteGolovina, E. V., A. V. Kalach, O. V. Bezzaponnaya, A. S. Krutolapov e S. V. Sharapov. "Improving the safety of oil and gas facilities by improving flame retardants". Pozharovzryvobezopasnost/Fire and Explosion Safety 31, n.º 3 (24 de julho de 2022): 24–33. http://dx.doi.org/10.22227/0869-7493.2022.31.03.24-33.
Texto completo da fonteMarkert, F., I. González, C. De La Parra Rogero e E. Serra Hosta. "Protection of pre-treated wood and construction materials using intumescent coatings". Journal of Physics: Conference Series 2654, n.º 1 (1 de dezembro de 2023): 012084. http://dx.doi.org/10.1088/1742-6596/2654/1/012084.
Texto completo da fonte