Literatura científica selecionada sobre o tema "Interparticle forces"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Interparticle forces".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Interparticle forces"
Ishida, Naoyuki. "1. Particle Characteristics and Measurement 1.9 Interparticle Forces 1.9.5 Interparticle Forces and Simulation". Journal of the Society of Powder Technology, Japan 55, n.º 12 (10 de dezembro de 2018): 645–47. http://dx.doi.org/10.4164/sptj.55.645.
Texto completo da fonteIshida, Naoyuki, e Shuji Matsusaka. "1.9.6 Summary of Interparticle Forces". Journal of the Society of Powder Technology, Japan 55, n.º 12 (10 de dezembro de 2018): 648. http://dx.doi.org/10.4164/sptj.55.648.
Texto completo da fonteColbeck, I., e J. Amass. "Electrostatic interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 28 (setembro de 1997): S283—S284. http://dx.doi.org/10.1016/s0021-8502(97)85142-7.
Texto completo da fonteColbeck, I., e J. Amass. "Dispersive interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 29 (setembro de 1998): S765—S766. http://dx.doi.org/10.1016/s0021-8502(98)90565-1.
Texto completo da fonteColbeck, I., e J. Amass. "Polarisation interparticle forces -pharmaceutical aerosols". Journal of Aerosol Science 29 (setembro de 1998): S767—S768. http://dx.doi.org/10.1016/s0021-8502(98)90566-3.
Texto completo da fonteLuckham, P. F. "The measurement of interparticle forces". Powder Technology 58, n.º 2 (junho de 1989): 75–91. http://dx.doi.org/10.1016/0032-5910(89)80019-1.
Texto completo da fonteSigmund, W. M., J. Sindel e F. Aldinger. "AFM-studies of interparticle forces". Progress in Colloid & Polymer Science 105, n.º 1 (dezembro de 1997): 23–26. http://dx.doi.org/10.1007/bf01188919.
Texto completo da fonteWang, Y. H., e W. K. Siu. "Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties". Canadian Geotechnical Journal 43, n.º 6 (1 de junho de 2006): 601–17. http://dx.doi.org/10.1139/t06-027.
Texto completo da fonteSeville, J. P. K., C. D. Willett e P. C. Knight. "Interparticle forces in fluidisation: a review". Powder Technology 113, n.º 3 (dezembro de 2000): 261–68. http://dx.doi.org/10.1016/s0032-5910(00)00309-0.
Texto completo da fonteSeipenbusch, M., S. Rothenbacher, M. Kirchhoff, H. J. Schmid, G. Kasper e A. P. Weber. "Interparticle forces in silica nanoparticle agglomerates". Journal of Nanoparticle Research 12, n.º 6 (27 de setembro de 2009): 2037–44. http://dx.doi.org/10.1007/s11051-009-9760-5.
Texto completo da fonteTeses / dissertações sobre o assunto "Interparticle forces"
Crawford, R. J. "Interparticle forces in clay minerals". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291033.
Texto completo da fonteHumes, R. "Interparticle forces in clay minerals". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370276.
Texto completo da fonteCostello, Bernard Anthony de Lacy. "Direct and rheological methods for measuring interparticle forces". Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/47822.
Texto completo da fonteSeville, Jonathan. "Interparticle forces in fluidised bed filtration of hot gases". Thesis, University of Surrey, 1987. http://epubs.surrey.ac.uk/844391/.
Texto completo da fonteNguyen, le Anh Vu. "Interparticle friction and Rheology of Dense suspensions". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS085.
Texto completo da fonteSuspensions - a type of material consisted of solid particles dispersed in a liquid medium— are omnipresent in our daily life and in industry. Their key characteristic is the shear stress required to make them flow at a desire shear rate: this attribute is the area of interest of Rheology. Recently, it emerged that the friction between the particles impact the rheology of concentrated suspensions. This microscopic interaction can be altered by modifying the particle surface or, especially, by changing the liquid medium. In this thesis, we are looking to evidence and characterize the effect of interparticle friction on the rheological behaviors of suspension in the dense regime. We found that suspensions of same particles behave differently (Newtonian or shear-thinning) depending on the solvents utilized. Furthermore, their flow curve can be connected to the measurement of friction coefficient as a function of the normal force applied on the particles. Our work help paving the way for studies on effects of forces at microscopic scale on the bulk rheology
Chin, Ching-Ju. "Aggregation of colloidal particles and breakup of aggregates : probing interparticle forces". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/21276.
Texto completo da fonteChou, Yi-Ping. "Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248369.
Texto completo da fonteArai, Nozomi. "Self-Assembly of Colloidal Particles with Controlled Interaction Forces". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263693.
Texto completo da fonteBadran, Youssef. "Modélisation multi-échelle des forces d'adhésion dans les lits fuidisés gaz-solide". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP111.
Texto completo da fonteThe overshoot in bed pressure drop at the minimum fluidization velocity, occurring during the transition from a fixed to a fluidized bed state, is a common phenomenon for fine particles categorized under Group A according to Geldart's classification. These particles exhibit hysteresis between the pressure drop curves for the decreasing and increasing gas velocity paths. This study employs two adhesive particle pressure models within two-fluid model simulations to incorporate the influence of interparticle Van der Waals force, aiming to predict the pressure overshoot. The first adhesive pressure model, developed within the kinetic theory of rapid granular flows framework, failed to capture the overshoot due to the prevalence of multiple and prolonged contacts in fixed beds. We proposed an alternative closure based on coordination number, generating a significantly higher adhesive contribution than the kinetic theory model and successfully reproducing the pressure drop overshoot.In addition, we constructed a Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) numerical database to predict hysteresis in pressure drop. This database can guide the formulation of an Eulerian transport equation for the coordination number, enabling the incorporation of deformation history effects. We explored the impact of Van der Waals force and static friction on the fluidization of fine solids at the mesoscale using CFD-DEM simulations and their role in causing the pressure overshoot phenomenon. Our analysis examines parameters such as gas pressure drop, bed voidage, coordination number, repulsive and adhesive solid pressures, vertical solid velocity gradient, fabric tensor, and particle-wall shear stress throughout the defluidization and fluidization processes. We demonstrated that it is necessary to consider the Van der Waals adhesion to predict the homogeneous expansion of the bed across the range of velocities from the minimum required for fluidization to the minimum for bubbling. The generated CFD-DEM dataset can guide the development of solid stress closures for two-fluid models to incorporate the effects of Van der Waals adhesion and static friction on fluidization hydrodynamics, allowing for the prediction of hysteresis in bed pressure drop at the macroscale.In this work, we incorporated a static-dynamic friction model into the massively parallel CFD-DEM code YALES2 using a two-step algorithm, aiming to address the shortcomings of the Coulomb dynamic friction model, which is practical for fast granular flows but not applicable to stationary beds. We validated our implementation through a series of macro- and microscale tests. Furthermore, we introduced interparticle and particle-wall Van der Waals forces into YALES2 and validated this addition at the microscale. Additionally, we postulated a relaxation expression for the source term in the coordination number transport equation and determined the coordination number relaxation time using CFD-DEM simulation data. Moreover, we employed a penalization technique to semi-implicitly couple gas and solid phases, specifically through the implicit handling of drag and Archimedes forces. This approach aimed to resolve the stability issues encountered when the interphase coupling is explicit
Tyrell, James W. G. "The influence of relative humidity on interparticle force". Thesis, University of Surrey, 1999. http://epubs.surrey.ac.uk/844097/.
Texto completo da fonteLivros sobre o assunto "Interparticle forces"
Ells, Thomas S. The effects of interparticle forces in fluidized beds. Ann Arbor, MI: University Microfilms International, 1988.
Encontre o texto completo da fontePandit, Jai Kant. Role of interparticle forces in fluidization. 2004.
Encontre o texto completo da fonteLee, Woo-Kul. The effect of interparticle forces on fluidization regimes: A study of magnetized fluidized beds. 1994.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Interparticle forces"
Wong, Anthony Chi-Ying. "Interparticle Forces". In Powder Technology in Plastics Processing, 121–26. München: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.3139/9781569908709.008.
Texto completo da fonteChi-Ying Wong, Anthony. "Interparticle Forces". In Powder Technology in Plastics Processing, 121–26. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.1007/978-1-56990-870-9_8.
Texto completo da fonteLow, Philip F. "Interparticle Forces of Clays". In Advances in Fine Particles Processing, 209–26. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7959-1_17.
Texto completo da fonteRietema, K. "Theoretical Derivation of Interparticle Forces". In The Dynamics of Fine Powders, 65–94. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3672-3_4.
Texto completo da fonteGoodwin, J. W. "Rheological Properties, Interparticle Forces and Suspension Structure". In The Structure, Dynamics and Equilibrium Properties of Colloidal Systems, 659–79. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3746-1_44.
Texto completo da fonteLowke, D. "Interparticle Forces and Rheology of Cement Based Suspensions". In Nanotechnology in Construction 3, 295–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_39.
Texto completo da fonteMurray, R. S., e J. P. Quirk. "Interparticle Forces in Relation to the Stability of Soil Aggregates". In NATO ASI Series, 439–61. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2611-1_16.
Texto completo da fonteKono, H. O., e T. Hikosaka. "The Effect of Interparticle Forces on the Separation of Fine Powders from Gas-Solid Two Phase Flow". In Developments in Food Engineering, 247–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_75.
Texto completo da fonte"Intermolecular and Interparticle Forces". In Introduction to Applied Colloid and Surface Chemistry, 11–33. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118881194.ch2.
Texto completo da fonteDávila Romero, Luciana C., e David L. Andrews. "Nanoscale Optics: Interparticle Forces". In Structured Light and Its Applications, 79–105. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-12-374027-4.00004-9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Interparticle forces"
Jazayeri, Amir M., Sohila Abdelhafiz e Aristide Dogariu. "Nonreciprocal Interparticle Forces in Kerker Dimers". In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sw4p.4.
Texto completo da fonteYifat, Yuval, Delphine Coursault, Curtis W. Peterson, John Parker e Norbert F. Scherer. "Interparticle separation dependent dynamics in optical matter (Conference Presentation)". In Complex Light and Optical Forces XII, editado por David L. Andrews, Enrique J. Galvez e Jesper Glückstad. SPIE, 2018. http://dx.doi.org/10.1117/12.2291251.
Texto completo da fonteBradshaw, David S., e David L. Andrews. "Near-field manipulation of interparticle forces through resonant absorption, optical binding, and dispersion forces". In SPIE NanoScience + Engineering, editado por Kishan Dholakia e Gabriel C. Spalding. SPIE, 2013. http://dx.doi.org/10.1117/12.2022008.
Texto completo da fonteJust, Marvin, Alexander Medina Peschiutta, Ralph Useldinger e Jörg Baller. "Maximum in Mass Flow Rates of Hard Metal Granules through Circular Orifices in Relation to the Angle of Repose". In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235765170.
Texto completo da fontePerminov, S. V., V. P. Drachev e S. G. Rautian. "Motion bistability of the plasmon nanoaggregate due to the light induced interparticle forces". In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192420.
Texto completo da fonteTuchiyama, Takahiro, e Hitoshi Takase. "Influence of Interparticle Forces on Structure of Agglomerates by Two-Stage Wet Agglomeration". In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_270.
Texto completo da fonteKong, Jie, Jorge Carmona-Reyes e Truell W. Hyde. "Interparticle Forces Between the Upper and Lower Particles in a Vertically Aligned Dust Particle Chain". In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345994.
Texto completo da fonteMeng, Fanhe, Jin Liu e Robert F. Richards. "Molecular Dynamics Study on Thermal Resistance Between Amorphous Silica Nanoparticles". In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4894.
Texto completo da fonteBarbely, Natasha L., Sorin I. Pirau e Narayanan M. Komerath. "Measurements of Wall Formation Forces in an Acoustic Resonator". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63307.
Texto completo da fonteLai´n, S., e M. Sommerfeld. "Structure and Pressure Drop in Particle-Laden Gas Flow Through a Pipe Bend: A Numerical Analysis by the Euler/Lagrange Approach". In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78090.
Texto completo da fonteRelatórios de organizações sobre o assunto "Interparticle forces"
Beloborodov, Dmitry, e Alexey Vishnyakov. Modeling of interparticle forces modified with mobile surfactant chains. Peeref, julho de 2023. http://dx.doi.org/10.54985/peeref.2307p1085993.
Texto completo da fonteBradford, Joe, Itzhak Shainberg e Lloyd Norton. Effect of Soil Properties and Water Quality on Concentrated Flow Erosion (Rills, Ephermal Gullies and Pipes). United States Department of Agriculture, novembro de 1996. http://dx.doi.org/10.32747/1996.7613040.bard.
Texto completo da fonte