Artigos de revistas sobre o tema "Interfacial thermal conductance"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Interfacial thermal conductance".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Green, Andrew J., e Hugh H. Richardson. "Solute Effects on Interfacial Thermal Conductance". MRS Proceedings 1543 (2013): 151–57. http://dx.doi.org/10.1557/opl.2013.677.
Texto completo da fonteRajabpour, Ali, Saeed Bazrafshan e Sebastian Volz. "Carbon-nitride 2D nanostructures: thermal conductivity and interfacial thermal conductance with the silica substrate". Physical Chemistry Chemical Physics 21, n.º 5 (2019): 2507–12. http://dx.doi.org/10.1039/c8cp06992a.
Texto completo da fonteYang, Wu Lin, Kun Peng, Jia Jun Zhu, De Yi Li e Ling Ping Zhou. "Numerical Modeling of Thermal Conductivity of Diamond Particle Reinforced Aluminum Composite". Advanced Materials Research 873 (dezembro de 2013): 344–49. http://dx.doi.org/10.4028/www.scientific.net/amr.873.344.
Texto completo da fonteFan, Hang, Kun Zhang, Guansong He, Zhijian Yang e Fude Nie. "Ab initio determination of interfacial thermal conductance for polymer-bonded explosive interfaces". AIP Advances 12, n.º 6 (1 de junho de 2022): 065005. http://dx.doi.org/10.1063/5.0094018.
Texto completo da fonteBai, Guang Zhao, Wan Jiang, G. Wang, Li Dong Chen e X. Shi. "Effective Thermal Conductivity of MoSi2/SiC Composites". Materials Science Forum 492-493 (agosto de 2005): 551–54. http://dx.doi.org/10.4028/www.scientific.net/msf.492-493.551.
Texto completo da fonteWu, Shuang, Jifen Wang, Huaqing Xie e Zhixiong Guo. "Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures". Energies 13, n.º 21 (9 de novembro de 2020): 5851. http://dx.doi.org/10.3390/en13215851.
Texto completo da fonteLiu, Yang, Wenhao Wu, Shixian Yang e Ping Yang. "Interfacial thermal conductance of graphene/MoS2 heterointerface". Surfaces and Interfaces 28 (fevereiro de 2022): 101640. http://dx.doi.org/10.1016/j.surfin.2021.101640.
Texto completo da fonteYang, Wei, Kun Wang, Yongsheng Fu, Kun Zheng, Yun Chen e Yongmei Ma. "Interfacial Thermal Conductance between Alumina and Epoxy". Journal of Physics: Conference Series 2109, n.º 1 (1 de novembro de 2021): 012018. http://dx.doi.org/10.1088/1742-6596/2109/1/012018.
Texto completo da fonteXu, Ke, Jicheng Zhang, Xiaoli Hao, Ning Wei, Xuezheng Cao, Yang Kang e Kun Cai. "Interfacial thermal conductance of buckling carbon nanotubes". AIP Advances 8, n.º 6 (junho de 2018): 065116. http://dx.doi.org/10.1063/1.5039499.
Texto completo da fonteZhang, Lifa, Juzar Thingna, Dahai He, Jian-Sheng Wang e Baowen Li. "Nonlinearity enhanced interfacial thermal conductance and rectification". EPL (Europhysics Letters) 103, n.º 6 (1 de setembro de 2013): 64002. http://dx.doi.org/10.1209/0295-5075/103/64002.
Texto completo da fonteLiu, Chenhan, Zhiyong Wei, Jian Wang, Kedong Bi, Juekuan Yang e Yunfei Chen. "The contact area dependent interfacial thermal conductance". AIP Advances 5, n.º 12 (dezembro de 2015): 127111. http://dx.doi.org/10.1063/1.4937775.
Texto completo da fonteDing, Zhiwei, Qing-Xiang Pei, Jin-Wu Jiang, Wenxuan Huang e Yong-Wei Zhang. "Interfacial thermal conductance in graphene/MoS2 heterostructures". Carbon 96 (janeiro de 2016): 888–96. http://dx.doi.org/10.1016/j.carbon.2015.10.046.
Texto completo da fontePeterson, G. P., e L. S. Fletcher. "Measurement of the Thermal Contact Conductance and Thermal Conductivity of Anodized Aluminum Coatings". Journal of Heat Transfer 112, n.º 3 (1 de agosto de 1990): 579–85. http://dx.doi.org/10.1115/1.2910426.
Texto completo da fonteRen, Kai, Yan Chen, Huasong Qin, Wenlin Feng e Gang Zhang. "Graphene/biphenylene heterostructure: Interfacial thermal conduction and thermal rectification". Applied Physics Letters 121, n.º 8 (22 de agosto de 2022): 082203. http://dx.doi.org/10.1063/5.0100391.
Texto completo da fonteWang, Qilang, Xing Liang, Bohai Liu, Yihui Song, Guohua Gao e Xiangfan Xu. "Thermal conductivity of V2O5 nanowires and their contact thermal conductance". Nanoscale 12, n.º 2 (2020): 1138–43. http://dx.doi.org/10.1039/c9nr08803b.
Texto completo da fonteGuo, Jianhua, Niping Ma, Jiale Chen e Ning Wei. "Efficient Non-Destructive Detection of Interface Adhesion State by Interfacial Thermal Conductance: A Molecular Dynamics Study". Processes 11, n.º 4 (29 de março de 2023): 1032. http://dx.doi.org/10.3390/pr11041032.
Texto completo da fonteStocker, Kelsey M., Suzanne M. Neidhart e J. Daniel Gezelter. "Interfacial thermal conductance of thiolate-protected gold nanospheres". Journal of Applied Physics 119, n.º 2 (14 de janeiro de 2016): 025106. http://dx.doi.org/10.1063/1.4939956.
Texto completo da fonteWang, W., e H. H. Qiu. "Interfacial thermal conductance in rapid contact solidification process". International Journal of Heat and Mass Transfer 45, n.º 10 (maio de 2002): 2043–53. http://dx.doi.org/10.1016/s0017-9310(01)00307-6.
Texto completo da fonteZhang, Chunwei, Weiwei Zhao, Yong Zeng, Hai Zhou, Kedong Bi e Yunfei Chen. "Manipulation of interfacial thermal conductance via Rhodamine 6G". Science Bulletin 60, n.º 6 (março de 2015): 654–56. http://dx.doi.org/10.1007/s11434-015-0754-7.
Texto completo da fonteZhang, Ying-Yan, Qing-Xiang Pei, Yiu-Wing Mai e Siu-Kai Lai. "Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure". Journal of Physics D: Applied Physics 49, n.º 46 (20 de outubro de 2016): 465301. http://dx.doi.org/10.1088/0022-3727/49/46/465301.
Texto completo da fonteOh, Dong-Wook, Seok Kim, John A. Rogers, David G. Cahill e Sanjiv Sinha. "Interfacial Thermal Conductance of Transfer-Printed Metal Films". Advanced Materials 23, n.º 43 (4 de outubro de 2011): 5028–33. http://dx.doi.org/10.1002/adma.201102994.
Texto completo da fonteHopkins, Patrick E. "Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance". ISRN Mechanical Engineering 2013 (30 de janeiro de 2013): 1–19. http://dx.doi.org/10.1155/2013/682586.
Texto completo da fonteHong, Yang, Jingchao Zhang e Xiao Cheng Zeng. "Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet". Physical Chemistry Chemical Physics 18, n.º 35 (2016): 24164–70. http://dx.doi.org/10.1039/c6cp03933b.
Texto completo da fonteYang, Wei, Yun Chen, Yipeng Zhang, Yongsheng Fu, Kun Zheng, Kun Wang e Yongmei Ma. "Thermal Conductance of Epoxy/Alumina Interfaces". Journal of Physics: Conference Series 2133, n.º 1 (1 de novembro de 2021): 012002. http://dx.doi.org/10.1088/1742-6596/2133/1/012002.
Texto completo da fonteMittelbach, M., C. Vogd, L. S. Fletcher e G. P. Peterson. "The Interfacial Pressure Distribution and Thermal Conductance of Bolted Joints". Journal of Heat Transfer 116, n.º 4 (1 de novembro de 1994): 823–28. http://dx.doi.org/10.1115/1.2911454.
Texto completo da fonteLiang, Xuebing, Chengchang Jia, Ke Chu e Hui Chen. "Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings". Rare Metals 30, n.º 5 (outubro de 2011): 544–49. http://dx.doi.org/10.1007/s12598-011-0427-x.
Texto completo da fonteLi, Shanchen, Yang Chen, Junhua Zhao, Chunlei Wang e Ning Wei. "Atomic structure causing an obvious difference in thermal conductance at the Pd–H2O interface: a molecular dynamics simulation". Nanoscale 12, n.º 34 (2020): 17870–79. http://dx.doi.org/10.1039/d0nr04594b.
Texto completo da fonteTao, Yi, Chao Wu, Han Qi, Chenhan Liu, Xiongyu Wu, Mengyi Hao, Zhiyong Wei, Juekuan Yang e Yunfei Chen. "The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam". Nanoscale 12, n.º 27 (2020): 14838–46. http://dx.doi.org/10.1039/c9nr09937a.
Texto completo da fonteZhang, Lin, e Ling Liu. "Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance". Nanoscale 11, n.º 8 (2019): 3656–64. http://dx.doi.org/10.1039/c8nr08760a.
Texto completo da fonteZhou, Xiao-wang, Reese E. Jones, Patrick E. Hopkins e Thomas E. Beechem. "Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics". Phys. Chem. Chem. Phys. 16, n.º 20 (2014): 9403–10. http://dx.doi.org/10.1039/c4cp00261j.
Texto completo da fonteDong, Yun, Yusong Ding, Zhiyuan Rui, Fangming Lian, Weibin Hui, Jie Wu, Zhiguo Wu e Pengxun Yan. "Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface". Nanotechnology 33, n.º 23 (15 de março de 2022): 235401. http://dx.doi.org/10.1088/1361-6528/ac56ba.
Texto completo da fontePan, Shuaihang, Jie Yuan, Tianqi Zheng, Zhenyu She e Xiaochun Li. "Interfacial thermal conductance of in situ aluminum-matrix nanocomposites". Journal of Materials Science 56, n.º 24 (24 de maio de 2021): 13646–58. http://dx.doi.org/10.1007/s10853-021-06176-7.
Texto completo da fonteWu, Dan, Hua Ding, Zhi-Qiang Fan, Pin-Zhen Jia, Hai-Qing Xie e Xue-Kun Chen. "High interfacial thermal conductance across heterogeneous GaN/graphene interface". Applied Surface Science 581 (abril de 2022): 152344. http://dx.doi.org/10.1016/j.apsusc.2021.152344.
Texto completo da fonteSeshadri, Indira, Theo Borca-Tasciuc, Pawel Keblinski e Ganpati Ramanath. "Interfacial thermal conductance-rheology nexus in metal-contacted nanocomposites". Applied Physics Letters 103, n.º 17 (21 de outubro de 2013): 173113. http://dx.doi.org/10.1063/1.4824702.
Texto completo da fonteGaitonde, Aalok, Amulya Nimmagadda e Amy Marconnet. "Measurement of interfacial thermal conductance in Lithium ion batteries". Journal of Power Sources 343 (março de 2017): 431–36. http://dx.doi.org/10.1016/j.jpowsour.2017.01.019.
Texto completo da fonteKhosravian, N., M. K. Samani, G. C. Loh, G. C. K. Chen, D. Baillargeat e B. K. Tay. "Molecular dynamic simulation of diamond/silicon interfacial thermal conductance". Journal of Applied Physics 113, n.º 2 (14 de janeiro de 2013): 024907. http://dx.doi.org/10.1063/1.4775399.
Texto completo da fonteChen, Yang, Yingyan Zhang, Kun Cai, Jinwu Jiang, Jin-Cheng Zheng, Junhua Zhao e Ning Wei. "Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures". Carbon 117 (junho de 2017): 399–410. http://dx.doi.org/10.1016/j.carbon.2017.03.011.
Texto completo da fonteZhang, W., T. S. Fisher e N. Mingo. "Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method". Journal of Heat Transfer 129, n.º 4 (30 de maio de 2006): 483–91. http://dx.doi.org/10.1115/1.2709656.
Texto completo da fonteWang, Quanjie, Xujun Wang, Xiangjun Liu e Jie Zhang. "Interfacial engineering for the enhancement of interfacial thermal conductance in GaN/AlN heterostructure". Journal of Applied Physics 129, n.º 23 (21 de junho de 2021): 235102. http://dx.doi.org/10.1063/5.0052742.
Texto completo da fonteZobeiri, Hamidreza, Nicholas Hunter, Ridong Wang, Xinman Liu, Hong Tan, Shen Xu e Xinwei Wang. "Thermal conductance between water and nm-thick WS2: extremely localized probing using nanosecond energy transport state-resolved Raman". Nanoscale Advances 2, n.º 12 (2020): 5821–32. http://dx.doi.org/10.1039/d0na00844c.
Texto completo da fonteVerma, Akarsh, Rajesh Kumar e Avinash Parashar. "Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach". Physical Chemistry Chemical Physics 21, n.º 11 (2019): 6229–37. http://dx.doi.org/10.1039/c9cp00362b.
Texto completo da fonteLiu, Xiangjun, Junfeng Gao, Gang Zhang e Yong-Wei Zhang. "Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance". Nanoscale 10, n.º 42 (2018): 19854–62. http://dx.doi.org/10.1039/c8nr06110f.
Texto completo da fonteJagannadham, K. "Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 32, n.º 5 (setembro de 2014): 051101. http://dx.doi.org/10.1116/1.4890576.
Texto completo da fonteRastgarkafshgarkolaei, Rouzbeh, Jingjie Zhang, Carlos A. Polanco, Nam Q. Le, Avik W. Ghosh e Pamela M. Norris. "Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers". Nanoscale 11, n.º 13 (2019): 6254–62. http://dx.doi.org/10.1039/c8nr09188a.
Texto completo da fonteAngeles, Frank, Xinping Shi e Richard B. Wilson. "In situ and ex situ processes for synthesizing metal multilayers with electronically conductive interfaces". Journal of Applied Physics 131, n.º 22 (14 de junho de 2022): 225302. http://dx.doi.org/10.1063/5.0084573.
Texto completo da fonteDinpajooh, Mohammadhasan, e Abraham Nitzan. "Heat conduction in polymer chains: Effect of substrate on the thermal conductance". Journal of Chemical Physics 156, n.º 14 (14 de abril de 2022): 144901. http://dx.doi.org/10.1063/5.0087163.
Texto completo da fonteXu, Bin, Shiqian Hu, Shih-Wei Hung, Cheng Shao, Harsh Chandra, Fu-Rong Chen, Takashi Kodama e Junichiro Shiomi. "Weaker bonding can give larger thermal conductance at highly mismatched interfaces". Science Advances 7, n.º 17 (abril de 2021): eabf8197. http://dx.doi.org/10.1126/sciadv.abf8197.
Texto completo da fonteDiao, Jiankuai, Deepak Srivastava e Madhu Menon. "Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance". Journal of Chemical Physics 128, n.º 16 (28 de abril de 2008): 164708. http://dx.doi.org/10.1063/1.2905211.
Texto completo da fonteTao, Yi, Chenhan Liu, Weiyu Chen, Shuang Cai, Chen Chen, Zhiyong Wei, Kedong Bi, Juekuan Yang e Yunfei Chen. "Mean free path dependent phonon contributions to interfacial thermal conductance". Physics Letters A 381, n.º 22 (junho de 2017): 1899–904. http://dx.doi.org/10.1016/j.physleta.2017.03.020.
Texto completo da fonteHu, Ming, Pawel Keblinski, Jian-Sheng Wang e Nachiket Raravikar. "Interfacial thermal conductance between silicon and a vertical carbon nanotube". Journal of Applied Physics 104, n.º 8 (15 de outubro de 2008): 083503. http://dx.doi.org/10.1063/1.3000441.
Texto completo da fonte