Literatura científica selecionada sobre o tema "Interfacial asperities"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Interfacial asperities".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Interfacial asperities"
Han, Yujin, Pierre-Marie Thebault, Corentin Audes, Xuelin Wang, Haiwoong Park, Jian-Zhong Jiang e Arnaud Caron. "Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities". Beilstein Journal of Nanotechnology 13 (23 de agosto de 2022): 817–27. http://dx.doi.org/10.3762/bjnano.13.72.
Texto completo da fonteWiertlewski, Michaël, Rebecca Fenton Friesen e J. Edward Colgate. "Partial squeeze film levitation modulates fingertip friction". Proceedings of the National Academy of Sciences 113, n.º 33 (1 de agosto de 2016): 9210–15. http://dx.doi.org/10.1073/pnas.1603908113.
Texto completo da fonteWu, Chu Han, Liang Chi Zhang, Shan Qing Li, Zheng Lian Jiang e Pei Lei Qu. "Effect of Asperity Plastic Deformation on the Interface Friction in Metal Forming". Key Engineering Materials 626 (agosto de 2014): 222–27. http://dx.doi.org/10.4028/www.scientific.net/kem.626.222.
Texto completo da fonteKomvopoulos, K., e D. H. Choi. "Elastic Finite Element Analysis of Multi-Asperity Contacts". Journal of Tribology 114, n.º 4 (1 de outubro de 1992): 823–31. http://dx.doi.org/10.1115/1.2920955.
Texto completo da fonteKomvopoulos, K., N. Saka e N. P. Suh. "The Mechanism of Friction in Boundary Lubrication". Journal of Tribology 107, n.º 4 (1 de outubro de 1985): 452–62. http://dx.doi.org/10.1115/1.3261108.
Texto completo da fonteKomvopoulos, K., e W. Yan. "Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems". Journal of Tribology 120, n.º 4 (1 de outubro de 1998): 808–13. http://dx.doi.org/10.1115/1.2833783.
Texto completo da fonteKomvopoulos, K., N. Saka e N. P. Suh. "Plowing Friction in Dry and Lubricated Metal Sliding". Journal of Tribology 108, n.º 3 (1 de julho de 1986): 301–12. http://dx.doi.org/10.1115/1.3261181.
Texto completo da fonteTakahashi, Yasuo, Terumi Nakamura, Yoshihiro Asakura e Masakatsu Maeda. "Influence of surface asperities on interfacial extension during solid state pressure welding". IOP Conference Series: Materials Science and Engineering 61 (1 de agosto de 2014): 012001. http://dx.doi.org/10.1088/1757-899x/61/1/012001.
Texto completo da fonteMaciejewski, Jan, Sebastian Bąk e Paweł Ciężkowski. "Modelling of Rock Joints Interface under Cyclic Loading". Studia Geotechnica et Mechanica 42, n.º 1 (19 de março de 2020): 36–47. http://dx.doi.org/10.2478/sgem-2019-0030.
Texto completo da fonteDe Meyere, Robin M. G., Kay Song, Louise Gale, Stephen Harris, Ian M. Edmonds, Thomas J. Marrow, Eduardo Saiz, Finn Giuliani, David E. J. Armstrong e Oriol Gavaldà-Diaz. "A novel trench fibre push-out method to evaluate interfacial failure in long fibre composites". Journal of Materials Research 36, n.º 11 (23 de março de 2021): 2305–14. http://dx.doi.org/10.1557/s43578-021-00153-1.
Texto completo da fonteTeses / dissertações sobre o assunto "Interfacial asperities"
Shu, Weiwei. "Analogical modelling of frictional slip on faults : implications for induced and triggered seismicity". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAH004.
Texto completo da fonteThe multi-scale roughness of a fault interface is responsible for multiple asperities that establish a complex and discrete set of real contacts. Since asperities control the initiation and evolution of the fault slip, it is important to explore the intrinsic relationships between the collective behavior of local asperities and the frictional stability of the global fault. Here we propose a novel analog experimental approach, which allows us to capture the temporal evolution of the slip of each asperity on a faulting interface. We find that many destabilizing events at the local asperity scale occurred in the slip-strengthening stage which is conventionally considered as the stable regime of a fault. We compute the interseismic coupling to evaluate the slipping behaviors of asperities during the slip-strengthening stage. We evidence that the interseismic coupling can be affected by the elastic interactions between asperities through the embedding soft matrix. Scaling laws of natural slow slip events are reproduced by our setup in particular the moment-duration scaling
Capítulos de livros sobre o assunto "Interfacial asperities"
"predicting the permissible external loading that a diamond-coated cutting tool can withstand without premature de-bonding. 3.1.6. Wear mechanisms. The failure of CVD diamond-coated inserts during machining can be in the form of flaking (interfacial failure) or abrasive wear (gradual cohesive failure) [22]. Ideally, a test of superb adhesion is when the diamond coating fully deteriorates by wear rather than flaking. Flaking will occur primarily due to poor adhesion between the diamond coating and the carbide substrate [6]. Therefore, flaking is clearly undesirable because the benefit of using a diamond coating is lost, except for the chip breaking assistance of faceted diamond crystals at the rake surface [29, 75]. If the adhesion strength of the CVD diamond coating is sufficient to withstand the machining stresses, then the abrasive action between the workpiece material and the diamond coating becomes the primary failure mechanism. Unless the CVD diamond coating is polished, a two-step wear mechanism is ex pected to occur. The first step is caused by the initial high surface roughness of the CVD diamond coating in which crack initiation occurs at the surface. The mecha nism that describes such behavior was proposed by Gunnars and Alahelisten [56]. They described a three-zone wear model as shown in Fig. 6. In this model, the role of residual stresses becomes significant in controlling crack propagation from the surface to the interface that could lead to interface failure (flaking). As outlined earlier, the high total compressive residual stress present in CVD diamond coatings on carbide inserts was assumed to be biaxial and oriented parallel to the interface. Wear starts to occur at the surface, which, because of geometry, allows stress to relax. A crack is more likely to initiate at protruding grains in zone I and propa gate preferentially along the (111) easy cleavage planes of diamond. The geometry at deeper depths, however, prevents the compressive residual stress from relaxing. Therefore, as the crack propagates deeper in the coating, it encounters higher com pressive stresses that cause the cracks to redirect their paths deviating from cleavage planes to a direction parallel to the interface in region II. The high compressive stress now causes cracks to propagate fast parallel to the interface resulting in a smooth surface in region III. Due to the smoother surface, fewer asperities will be present and it becomes harder to nucleate cracks." In Adhesion Aspects of Thin Films, Volume 1, 100–139. CRC Press, 2014. http://dx.doi.org/10.1201/b11971-20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Interfacial asperities"
Jayadeep, U. B., R. Krishna Sabareesh, R. Nirmal, K. V. Rijin e C. B. Sobhan. "Molecular Dynamics Modeling of the Effect of Thermal Interface Material on Thermal Contact Conductance". In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52204.
Texto completo da fonteJiang, Jishen, Bingqian Xu, Weizhe Wang, Richard Amankwa Adjei, Xiaofeng Zhao e Yingzheng Liu. "FE Analysis of the Effects of TGO Thickness and Interface Asperity on the Cracking Behavior Between the TGO and the Bond Coat". In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56755.
Texto completo da fonteJeng, Yeau-Ren, e Pay-Yau Huang. "A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63260.
Texto completo da fonteDini, Daniele. "Between Continuum and Atomistic Contact Mechanics: Could We Bridge the Gap?" In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44446.
Texto completo da fonteXiao, Huifang, Yunyun Sun, Xiaojun Zhou e Zaigang Chen. "Study on the Normal Contact Stiffness of Rough Surface in Mixed Lubrication". In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85034.
Texto completo da fonteDelRio, Frank W., Maarten P. de Boer, Leslie M. Phinney, Chris J. Bourdon e Martin L. Dunn. "Van der Waals and Capillary Adhesion of Microelectromechanical Systems". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15169.
Texto completo da fonte