Artigos de revistas sobre o tema "Interface neuronale"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Interface neuronale".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Goto, Toichiro, Nahoko Kasai, Rick Lu, Roxana Filip e Koji Sumitomo. "Scanning Electron Microscopy Observation of Interface Between Single Neurons and Conductive Surfaces". Journal of Nanoscience and Nanotechnology 16, n.º 4 (1 de abril de 2016): 3383–87. http://dx.doi.org/10.1166/jnn.2016.12311.
Texto completo da fonteWang, Xinyuan. "Intracortical Brain-machine Interface for Restoring Sensory Motor Function: Progress and Challenges". International Journal of Biology and Life Sciences 3, n.º 2 (26 de junho de 2023): 31–38. http://dx.doi.org/10.54097/ijbls.v3i2.10514.
Texto completo da fonteBernardin, Evans, Christopher L. Frewin, Abhishek Dey, Richard Everly, Jawad Ul Hassan, Erik Janzén, Joe Pancrazio e Stephen E. Saddow. "Development of an all-SiC neuronal interface device". MRS Advances 1, n.º 55 (2016): 3679–84. http://dx.doi.org/10.1557/adv.2016.360.
Texto completo da fonteSahni, Deshdeepak, Andrew Jea, Javier A. Mata, Daniela C. Marcano, Ahilan Sivaganesan, Jacob M. Berlin, Claudio E. Tatsui et al. "Biocompatibility of pristine graphene for neuronal interface". Journal of Neurosurgery: Pediatrics 11, n.º 5 (maio de 2013): 575–83. http://dx.doi.org/10.3171/2013.1.peds12374.
Texto completo da fonteCao, Jiong, Jenni I. Viholainen, Caroline Dart, Helen K. Warwick, Mark L. Leyland e Michael J. Courtney. "The PSD95–nNOS interface". Journal of Cell Biology 168, n.º 1 (3 de janeiro de 2005): 117–26. http://dx.doi.org/10.1083/jcb.200407024.
Texto completo da fonteMacías Macías, José Manuel, Juan Alberto Ramírez Quintana, José Salvador Antonio Méndez Aguirre, Mario Ignacio Chacón Murguía e Alma Delia Corral Sáenz. "Procesamiento embebido de p300 basado en red neuronal convolucional para interfaz cerebro-computadora ubicua". RECIBE, Revista ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA 9, n.º 2 (1 de fevereiro de 2021): B1—B24. http://dx.doi.org/10.32870/recibe.v9i2.153.
Texto completo da fonteLiang, Elaine, Jiuyun Shi e Bozhi Tian. "Freestanding nanomaterials for subcellular neuronal interfaces". iScience 25, n.º 1 (janeiro de 2022): 103534. http://dx.doi.org/10.1016/j.isci.2021.103534.
Texto completo da fonteKeskinbora, Kadircan H., e Kader Keskinbora. "Ethical considerations on novel neuronal interfaces". Neurological Sciences 39, n.º 4 (2 de dezembro de 2017): 607–13. http://dx.doi.org/10.1007/s10072-017-3209-x.
Texto completo da fontePronker, Matti F., Roderick P. Tas, Hedwich C. Vlieg e Bert J. C. Janssen. "Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction". Acta Crystallographica Section D Structural Biology 73, n.º 11 (19 de outubro de 2017): 860–76. http://dx.doi.org/10.1107/s2059798317013791.
Texto completo da fonteMilekovic, Tomislav, Anish A. Sarma, Daniel Bacher, John D. Simeral, Jad Saab, Chethan Pandarinath, Brittany L. Sorice et al. "Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals". Journal of Neurophysiology 120, n.º 1 (1 de julho de 2018): 343–60. http://dx.doi.org/10.1152/jn.00493.2017.
Texto completo da fonteSAKURAI, Yoshio. "Multi-neuronal activity-cell assembly-brain-machine interface". Japanese Journal of Physiological Psychology and Psychophysiology 24, n.º 1 (2006): 57–67. http://dx.doi.org/10.5674/jjppp1983.24.57.
Texto completo da fonteMaksimenko, V. A., A. A. Harchenko e A. Lüttjohann. "Automated System for Epileptic Seizures Prediction based on Multi-Channel Recordings of Electrical Brain Activity". Information and Control Systems, n.º 4 (23 de setembro de 2018): 115–22. http://dx.doi.org/10.31799/1684-8853-2018-4-115-122.
Texto completo da fonteFadeeva, Elena, Andrea Deiwick, Boris Chichkov e Sabrina Schlie-Wolter. "Impact of laser-structured biomaterial interfaces on guided cell responses". Interface Focus 4, n.º 1 (6 de fevereiro de 2014): 20130048. http://dx.doi.org/10.1098/rsfs.2013.0048.
Texto completo da fontePatolsky, Fernando, Brian P. Timko, Gengfeng Zheng e Charles M. Lieber. "Nanowire-Based Nanoelectronic Devices in the Life Sciences". MRS Bulletin 32, n.º 2 (fevereiro de 2007): 142–49. http://dx.doi.org/10.1557/mrs2007.47.
Texto completo da fonteHinterberger, Thilo, Ralf Veit, Barbara Wilhelm, Nikolaus Weiskopf, Jean-Jacques Vatine e Niels Birbaumer. "Neuronal mechanisms underlying control of a brain-computer interface". European Journal of Neuroscience 21, n.º 11 (junho de 2005): 3169–81. http://dx.doi.org/10.1111/j.1460-9568.2005.04092.x.
Texto completo da fonteFisher, Robert S. "12. Neuronal damage and epilepsy: basic and clinical interface". Epilepsy Research 10, n.º 1 (outubro de 1991): 80–89. http://dx.doi.org/10.1016/0920-1211(91)90098-z.
Texto completo da fonteGiuffrè, Mauro, Rita Moretti, Giuseppina Campisciano, Alexandre Barcelos Morais da Silveira, Vincenzo Maria Monda, Manola Comar, Stefano Di Bella, Roberta Maria Antonello, Roberto Luzzati e Lory Saveria Crocè. "You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS". Journal of Clinical Medicine 9, n.º 11 (18 de novembro de 2020): 3705. http://dx.doi.org/10.3390/jcm9113705.
Texto completo da fonteDillon, Aiden P., Saba Moslehi, Bret Brouse, Saumya Keremane, Sam Philliber, Willem Griffiths, Conor Rowland, Julian H. Smith e Richard P. Taylor. "Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes". Bioengineering 11, n.º 8 (12 de agosto de 2024): 823. http://dx.doi.org/10.3390/bioengineering11080823.
Texto completo da fonteSeyock, Silke, Vanessa Maybeck, Emmanuel Scorsone, Lionel Rousseau, Clément Hébert, Gaëlle Lissorgues, Philippe Bergonzo e Andreas Offenhäusser. "Interfacing neurons on carbon nanotubes covered with diamond". RSC Advances 7, n.º 1 (2017): 153–60. http://dx.doi.org/10.1039/c6ra20207a.
Texto completo da fonteTamura, H., T. Kawashima, S. Suzuki, I. Fujita e H. Kaneko. "Efficient Signal Processing of Multineuronal Activities for Neural Interface and Prosthesis". Methods of Information in Medicine 46, n.º 02 (2007): 147–50. http://dx.doi.org/10.1055/s-0038-1625396.
Texto completo da fonteTaskin, Mehmet Berat, Ruodan Xu, Huiling Zhao, Xueqin Wang, Mingdong Dong, Flemming Besenbacher e Menglin Chen. "Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers". Physical Chemistry Chemical Physics 17, n.º 14 (2015): 9446–53. http://dx.doi.org/10.1039/c5cp00413f.
Texto completo da fonteTay, Andy, Felix E. Schweizer e Dino Di Carlo. "Micro- and nano-technologies to probe the mechano-biology of the brain". Lab on a Chip 16, n.º 11 (2016): 1962–77. http://dx.doi.org/10.1039/c6lc00349d.
Texto completo da fonteWu, Xiaosa, David J. Craik e Quentin Kaas. "Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor". Marine Drugs 19, n.º 9 (26 de agosto de 2021): 482. http://dx.doi.org/10.3390/md19090482.
Texto completo da fonteLin, Yue-Xian, Shu-Han Li e Wei-Chen Huang. "Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing". Micromachines 12, n.º 9 (31 de agosto de 2021): 1057. http://dx.doi.org/10.3390/mi12091057.
Texto completo da fonteOchoa, Vanessa, Annalee J. Loeffler e Christie D. Fowler. "Emerging Role of the Cerebrospinal Fluid – Neuronal Interface in Neuropathology". Neuro - Open Journal 2, n.º 2 (16 de dezembro de 2015): 92–98. http://dx.doi.org/10.17140/noj-2-118.
Texto completo da fonteBarnes, Peter J. "Neuroeffector mechanisms: The interface between inflammation and neuronal responses☆☆☆★". Journal of Allergy and Clinical Immunology 98, n.º 5 (novembro de 1996): S73—S83. http://dx.doi.org/10.1016/s0091-6749(96)70020-9.
Texto completo da fonteCortés-Llanos, Belén, Rossana Rauti, Ángel Ayuso-Sacido, Lucas Pérez e Laura Ballerini. "Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks". Biomolecules 13, n.º 5 (30 de abril de 2023): 783. http://dx.doi.org/10.3390/biom13050783.
Texto completo da fonteDeriabin, Konstantin V., Sergey O. Kirichenko, Alexander V. Lopachev, Yuriy Sysoev, Pavel E. Musienko e Regina M. Islamova. "Ferrocenyl-containing silicone nanocomposites as materials for neuronal interfaces". Composites Part B: Engineering 236 (maio de 2022): 109838. http://dx.doi.org/10.1016/j.compositesb.2022.109838.
Texto completo da fonteWolfrum, Bernhard, Yulia Mourzina, Frank Sommerhage e Andreas Offenhäusser. "Suspended Nanoporous Membranes as Interfaces for Neuronal Biohybrid Systems". Nano Letters 6, n.º 3 (março de 2006): 453–57. http://dx.doi.org/10.1021/nl052370x.
Texto completo da fonteCoyle, Damien, Jose Principe, Fabien Lotte e Anton Nijholt. "Guest Editorial: Brain/neuronal - Computer game interfaces and interaction". IEEE Transactions on Computational Intelligence and AI in Games 5, n.º 2 (junho de 2013): 77–81. http://dx.doi.org/10.1109/tciaig.2013.2264736.
Texto completo da fonteMünzberg, Heike, Elizabeth Floyd e Ji Suk Chang. "Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?" Physiology 36, n.º 4 (1 de julho de 2021): 246–55. http://dx.doi.org/10.1152/physiol.00038.2020.
Texto completo da fonteVomero, Maria, Elisa Castagnola, Emma Maggiolini, Francesca Ciarpella, Irene Rembado, Noah Goshi, Luciano Fadiga, Samuel Kassegne e Davide Ricci. "A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces". Advances in Science and Technology 102 (outubro de 2016): 68–76. http://dx.doi.org/10.4028/www.scientific.net/ast.102.68.
Texto completo da fonteWeigel, Tobias, Julian Brennecke e Jan Hansmann. "Improvement of the Electronic—Neuronal Interface by Natural Deposition of ECM". Materials 14, n.º 6 (12 de março de 2021): 1378. http://dx.doi.org/10.3390/ma14061378.
Texto completo da fonteAbdullaeva, Oliya S., Matthias Schulz, Frank Balzer, Jürgen Parisi, Arne Lützen, Karin Dedek e Manuela Schiek. "Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor–Electrolyte Interface". Langmuir 32, n.º 33 (9 de agosto de 2016): 8533–42. http://dx.doi.org/10.1021/acs.langmuir.6b02085.
Texto completo da fonteVermaas, M., M. C. Piastra, T. F. Oostendorp, N. F. Ramsey e P. H. E. Tiesinga. "FEMfuns: A Volume Conduction Modeling Pipeline that Includes Resistive, Capacitive or Dispersive Tissue and Electrodes". Neuroinformatics 18, n.º 4 (18 de abril de 2020): 569–80. http://dx.doi.org/10.1007/s12021-020-09458-8.
Texto completo da fonteSarmiento-Ramos, José Luis. "Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica". Revista UIS Ingenierías 19, n.º 4 (30 de maio de 2020): 1–18. http://dx.doi.org/10.18273/revuin.v19n4-2020001.
Texto completo da fonteGáspár, Szilveszter, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati e Elisabetta Colombo. "Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces". Materials 14, n.º 16 (23 de agosto de 2021): 4761. http://dx.doi.org/10.3390/ma14164761.
Texto completo da fonteMesiti, Fabio, e Ilangko Balasingham. "Nanomachine-to-Neuron Communication Interfaces for Neuronal Stimulation at Nanoscale". IEEE Journal on Selected Areas in Communications 31, n.º 12 (dezembro de 2013): 695–704. http://dx.doi.org/10.1109/jsac.2013.sup2.1213002.
Texto completo da fonteKudoh, Suguru N., Chie Hosokawa, Ai Kiyohara, Takahisa Taguchi e Isao Hayashi. "Biomodeling System - Interaction Between Living Neuronal Networks and the Outer World". Journal of Robotics and Mechatronics 19, n.º 5 (20 de outubro de 2007): 592–600. http://dx.doi.org/10.20965/jrm.2007.p0592.
Texto completo da fonteEggers, M. D. "Electronically wired petri dish: A microfabricated interface to the biological neuronal network". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, n.º 6 (novembro de 1990): 1392. http://dx.doi.org/10.1116/1.585084.
Texto completo da fonteLiopo, Anton V., Michael P. Stewart, Jared Hudson, James M. Tour e Todd C. Pappas. "Biocompatibility of Native and Functionalized Single-Walled Carbon Nanotubes for Neuronal Interface". Journal of Nanoscience and Nanotechnology 6, n.º 5 (1 de maio de 2006): 1365–74. http://dx.doi.org/10.1166/jnn.2006.155.
Texto completo da fonteWang, Sheng, Stephanie Szobota, Yuan Wang, Matthew Volgraf, Zhaowei Liu, Cheng Sun, Dirk Trauner, Ehud Y. Isacoff e Xiang Zhang. "All Optical Interface for Parallel, Remote, and Spatiotemporal Control of Neuronal Activity". Nano Letters 7, n.º 12 (dezembro de 2007): 3859–63. http://dx.doi.org/10.1021/nl072783t.
Texto completo da fonteDiCaprio, R. A., e C. Schmidtmann. "A Multichannel Counter/Timer Interface for the Acquisition of Neuronal Spike Trains". IEEE Transactions on Biomedical Engineering BME-32, n.º 5 (maio de 1985): 345–47. http://dx.doi.org/10.1109/tbme.1985.325553.
Texto completo da fonteReul, J. M. H. M. "S.05.02 Neuronal signaling and epigenetic mechanisms at the cognition-emotion interface". European Neuropsychopharmacology 20 (agosto de 2010): S168—S169. http://dx.doi.org/10.1016/s0924-977x(10)70138-3.
Texto completo da fonteIslam, Asiful, e Latika Menon. "Interactions between E18 Rat Hippocampal Neurons and Au-Nanowire Arrays". Advanced Materials Research 383-390 (novembro de 2011): 3863–68. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.3863.
Texto completo da fonteAlghazali, Karrer M., Rabab N. Hamzah, Zeid A. Nima, Richard Steiner, Madhu Dhar, David E. Anderson, Abdallah Hayar, Robert J. Griffin e Alexandru S. Biris. "Plasmonic Nanofactors as Switchable Devices to Promote or Inhibit Neuronal Activity and Function". Nanomaterials 9, n.º 7 (18 de julho de 2019): 1029. http://dx.doi.org/10.3390/nano9071029.
Texto completo da fonteZheng, Ke. "Neuromodulation Based on Brain-computer Interface Technology". Highlights in Science, Engineering and Technology 36 (21 de março de 2023): 460–67. http://dx.doi.org/10.54097/hset.v36i.5716.
Texto completo da fonteWelle, Theresa M., Kristen Alanis, Michelle L. Colombo, Jonathan V. Sweedler e Mei Shen. "A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes". Chemical Science 9, n.º 22 (2018): 4937–41. http://dx.doi.org/10.1039/c8sc01131a.
Texto completo da fonteLebedev, M. A. "BRAIN-COMPUTER INTERFACE FOR THE AUGMENTATION OF BRAIN FUNCTIONS". Science and Innovations in Medicine 1, n.º 3 (15 de setembro de 2016): 11–27. http://dx.doi.org/10.35693/2500-1388-2016-0-3-11-27.
Texto completo da fonteLi, Zheng, Joseph E. O'Doherty, Mikhail A. Lebedev e Miguel A. L. Nicolelis. "Adaptive Decoding for Brain-Machine Interfaces Through Bayesian Parameter Updates". Neural Computation 23, n.º 12 (dezembro de 2011): 3162–204. http://dx.doi.org/10.1162/neco_a_00207.
Texto completo da fonte