Literatura científica selecionada sobre o tema "Interacting particles systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Interacting particles systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Interacting particles systems"
Karmanov, Vladimir A. "Abnormal Bound Systems". Universe 8, n.º 2 (3 de fevereiro de 2022): 95. http://dx.doi.org/10.3390/universe8020095.
Texto completo da fonteAbadi, Noam, e Franco Ruzzenenti. "Complex Networks and Interacting Particle Systems". Entropy 25, n.º 11 (27 de outubro de 2023): 1490. http://dx.doi.org/10.3390/e25111490.
Texto completo da fonteSudbury, Aidan. "The survival of various interacting particle systems". Advances in Applied Probability 25, n.º 4 (dezembro de 1993): 1010–12. http://dx.doi.org/10.2307/1427804.
Texto completo da fonteSudbury, Aidan. "The survival of various interacting particle systems". Advances in Applied Probability 25, n.º 04 (dezembro de 1993): 1010–12. http://dx.doi.org/10.1017/s0001867800025878.
Texto completo da fonteItoh, Yoshiaki, Colin Mallows e Larry Shepp. "Explicit sufficient invariants for an interacting particle system". Journal of Applied Probability 35, n.º 3 (setembro de 1998): 633–41. http://dx.doi.org/10.1239/jap/1032265211.
Texto completo da fonteItoh, Yoshiaki, Colin Mallows e Larry Shepp. "Explicit sufficient invariants for an interacting particle system". Journal of Applied Probability 35, n.º 03 (setembro de 1998): 633–41. http://dx.doi.org/10.1017/s0021900200016284.
Texto completo da fonteMETZNER, WALTER, e CLAUDIO CASTELLANI. "TWO PARTICLE CORRELATIONS AND ORTHOGONALITY CATASTROPHE IN INTERACTING FERMI SYSTEMS". International Journal of Modern Physics B 09, n.º 16 (20 de julho de 1995): 1959–83. http://dx.doi.org/10.1142/s021797929500080x.
Texto completo da fonteMorvan, A., T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin et al. "Formation of robust bound states of interacting microwave photons". Nature 612, n.º 7939 (7 de dezembro de 2022): 240–45. http://dx.doi.org/10.1038/s41586-022-05348-y.
Texto completo da fonteSKOROHOD, A. V. "Infinite systems of randomly interacting particles". Random Operators and Stochastic Equations 1, n.º 1 (1993): 1–14. http://dx.doi.org/10.1515/rose.1993.1.1.1.
Texto completo da fonteKarwowski, Jacek, e Kamil Szewc. "Quasi-Exactly Solvable Models in Quantum Chemistry". Collection of Czechoslovak Chemical Communications 73, n.º 10 (2008): 1372–90. http://dx.doi.org/10.1135/cccc20081372.
Texto completo da fonteTeses / dissertações sobre o assunto "Interacting particles systems"
Glass, K. "Dynamics of systems of interacting particles". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599435.
Texto completo da fonteFranz, Benjamin. "Recent modelling frameworks for systems of interacting particles". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ac76d159-4cdd-40c9-b378-6ea1faf48aed.
Texto completo da fonteRomanovsky, Igor Alexandrovich. "Novel properties of interacting particles in small low-dimensional systems". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.
Texto completo da fonteLandman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
Jacquot, Stéphanie Mireille. "Large systems of interacting particles : the Marcus-Lushnikov process and the β-Laguerre ensemble". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610327.
Texto completo da fonteGeiger, Benjamin [Verfasser], e Klaus [Akademischer Betreuer] Richter. "From few to many particles: Semiclassical approaches to interacting quantum systems / Benjamin Geiger ; Betreuer: Klaus Richter". Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215906064/34.
Texto completo da fonteLafleche, Laurent. "Dynamique de systèmes à grand nombre de particules et systèmes dynamiques". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED010.
Texto completo da fonteIn this thesis, we study the behavior of solutions of partial differential equations that arise from the modeling of systems with a large number of particles. The dynamic of all these systems is driven by interaction between the particles and external and internal forces. However, we will consider different scales and travel from the quantum level of atoms to the macroscopic level of stars. We will see that differences emerge from the associated dynamics even though the main properties are conserved. In this journey, we will cross the path of various applications of these equations such as astrophysics, plasma, semi-conductors, biology, economy. This work is divided in three parts.In the first one, we study the semi classical behavior of the quantum Hartree equation and its limit to the kinetic Vlasov equation. Properties such as the propagation of moments and weighted Lebesgue norms and dispersive estimates are quantified uniformly in the Planck constant and used to establish stability estimates in a semiclassical analogue of the Wasserstein distance between the solutions of these two equations.In the second part, we investigate the long time behavior of macroscopic and kinetic models where the collision operatoris linear and has a heavy-tailed local equilibrium, such as the Fokker-Planck operator, the fractional Laplacian with a driftor a Linear Boltzmann operator. This let appear two main techniques, the entropy method and the positivity method.In the third part, we are interested in macroscopic models inspired from the Keller-Segel equation, and we study therange of parameters under which the system collapses, disperses or stabilizes. The first effect is studied using appropriate weights, the second using Wasserstein distances and the third using Lebesgue norms
Gracar, Peter. "Random interacting particle systems". Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761028.
Texto completo da fonteDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168/document.
Texto completo da fonteThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Wang, Hao Carleton University Dissertation Mathematics and Statistics. "Interacting branching particle systems and superprocesses". Ottawa, 1995.
Encontre o texto completo da fonteDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact". Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168.
Texto completo da fonteThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Livros sobre o assunto "Interacting particles systems"
Kipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.
Encontre o texto completo da fonteSalabura, Piotr. Vector mesons in strongly interacting systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2003.
Encontre o texto completo da fonteLiggett, Thomas M. Interacting particle systems. Berlin: Springer, 2005.
Encontre o texto completo da fonteLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.
Texto completo da fonteLiggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.
Texto completo da fonteLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985.
Encontre o texto completo da fonte1938-, Arenhövel H., ed. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.
Encontre o texto completo da fonteKipnis, Claude, e Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.
Texto completo da fontePapanicolaou, George, ed. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.
Texto completo da fonteGeorge, Papanicolaou, e University of Minnesota. Institute for Mathematics and its Applications., eds. Hydrodynamic behavior and interacting particle systems. New York: Springer-Verlag, 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Interacting particles systems"
Liverani, C. "Interacting Particles". In Hard Ball Systems and the Lorentz Gas, 179–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04062-1_8.
Texto completo da fonteNolting, Wolfgang, e William D. Brewer. "Systems of Interacting Particles". In Fundamentals of Many-body Physics, 197–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71931-1_4.
Texto completo da fonteNolting, Wolfgang. "Systems of Interacting Particles". In Theoretical Physics 9, 205–319. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98326-4_4.
Texto completo da fonteCichocki, B. "Interacting Brownian Particles". In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 65–71. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_5.
Texto completo da fonteSkorohod, A. V. "Randomly Interacting Systems Of Particles". In Stochastic Equations for Complex Systems, 67–169. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3767-3_2.
Texto completo da fonteGuo, M. Z., e G. Papanicolaou. "Bulk Diffusion for Interacting Brownian Particles". In Statistical Physics and Dynamical Systems, 41–48. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6653-7_3.
Texto completo da fonteMikhailov, Alexander S., e Gerhard Ertl. "Systems with Interacting Particles and Soft Matter". In Chemical Complexity, 159–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57377-9_11.
Texto completo da fonteSpohn, Herbert. "Interacting Brownian Particles: A Study of Dyson’s Model". In Hydrodynamic Behavior and Interacting Particle Systems, 151–79. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_13.
Texto completo da fonteChaikin, P. M., W. D. Dozier e H. M. Lindsay. "Experiments on Suspensions of Interacting Particles in Fluids". In Hydrodynamic Behavior and Interacting Particle Systems, 13–24. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_2.
Texto completo da fonteSergeev, Y. A. "Nonlinear Concentration Waves in Fluidized Beds of Interacting Particles". In Mobile Particulate Systems, 233–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8518-7_15.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Interacting particles systems"
Izrailev, F. M. "Regular versus chaotic dynamics in closed systems of interacting Fermi particles". In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physics: WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996878.
Texto completo da fonteHerrera, Dianela, e Sergio Curilef. "Numerical study of a Vlasov equation for systems with interacting particles". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912388.
Texto completo da fonteKim, Bongsoo, Kyozi Kawasaki, Michio Tokuyama, Irwin Oppenheim e Hideya Nishiyama. "A FDR-Preserving Field Theory for Interacting Brownian Particles: One-Loop Theory and MCT". In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897790.
Texto completo da fonteCARMONA, J. M., N. MICHEL, J. RICHERT e P. WAGNER. "NUCLEAR FRAGMENTATION, PHASE TRANSITIONS AND THEIR CHARACTERIZATION IN FINITE SYSTEMS OF INTERACTING PARTICLES". In Proceedings of the Conference “Bologna 2000: Structure of the Nucleus at the Dawn of the Century”. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810939_0023.
Texto completo da fonteBriegel, Hans. "Entanglement in quantum many-body systems far away from thermodynamic equilibrium". In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Texto completo da fonteIzrailev, F. M. "Quantum-Classical Correspondence for Isolated Systems of Interacting Particles: Localization and Ergodicity in Energy Space". In Proceedings of Nobel Symposium 116. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811004_0014.
Texto completo da fonteSzamel, Grzegorz, Michio Tokuyama, Irwin Oppenheim e Hideya Nishiyama. "Diagrammatic Approach to the Dynamics of Interacting Brownian Particles: Mode-Coupling Theory, Generalized Mode-Coupling Theory, and All That". In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897869.
Texto completo da fonteOzyer, Baris, Ismet Erkmen e Aydan M. Erkmen. "Catching Continuum Between Preshape and Grasping Based on Fluidics". In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24632.
Texto completo da fonteAgarwal, Gaurav, Brian Lattimer, Srinath Ekkad e Uri Vandsburger. "Grid-Zone Particle Hydrodynamics and Solid Circulation in a Multiple Jet Fluidized Bed". In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72066.
Texto completo da fonteNavakas, Robertas, e Algis Džiugys. "A community detection method for network structure analysis of force chains in granular medium in a rotating drum". In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.079.
Texto completo da fonteRelatórios de organizações sobre o assunto "Interacting particles systems"
Pullammanappallil, Pratap, Haim Kalman e Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, janeiro de 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Texto completo da fonteVaradhan, S. R. Interacting Particle Systems and Their Scaling Limits. Fort Belvoir, VA: Defense Technical Information Center, março de 1996. http://dx.doi.org/10.21236/ada308783.
Texto completo da fonteZhang, Xingyu, Matteo Ciantia, Jonathan Knappett e Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, dezembro de 2021. http://dx.doi.org/10.20933/100001235.
Texto completo da fonteAnisimov, Petr Mikhaylovich. Quantum interaction of a few particle system mediated by photons. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1356103.
Texto completo da fontePeter J. Mucha. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions. Office of Scientific and Technical Information (OSTI), agosto de 2007. http://dx.doi.org/10.2172/939459.
Texto completo da fonteSviratcheva, K. D., e J. P. Draayer. Realistic Two-body Interactions in Many-nucleon Systems: Correlated Motion beyond Single-particle Behavior. Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/885281.
Texto completo da fonteGrabowski, Wojciech. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions. Office of Scientific and Technical Information (OSTI), março de 2016. http://dx.doi.org/10.2172/1244254.
Texto completo da fonteChefetz, Benny, e Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.
Texto completo da fonteChefetz, Benny, e Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709883.bard.
Texto completo da fonteKollias, Pavlos. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions: Final Report. Office of Scientific and Technical Information (OSTI), agosto de 2017. http://dx.doi.org/10.2172/1374165.
Texto completo da fonte