Índice
Literatura científica selecionada sobre o tema "Integrated circuits Very large scale integration Design and construction Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Integrated circuits Very large scale integration Design and construction Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Teses / dissertações sobre o assunto "Integrated circuits Very large scale integration Design and construction Mathematical models"
Bishop, Gregory Raymond H. ""On stochastic modelling of very large scale integrated circuits : an investigation into the timing behaviour of microelectronic systems" /". Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phb6222.pdf.
Texto completo da fonteDickinson, Alex. "Complexity management and modelling of VLSI systems". Title page, contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phd553.pdf.
Texto completo da fonteZhang, Mingyang 1981. "Macromodeling and simulation of linear components characterized by measured parameters". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112589.
Texto completo da fonteBishop, Gregory Raymond H. ""On stochastic modelling of very large scale integrated circuits : an investigation into the timing behaviour of microelectronic systems"". Thesis, 1993. http://hdl.handle.net/2440/21376.
Texto completo da fontePope, Michael T. (Michael Travers). "VLSI systems simulation / Michael T. Pope". 1991. http://hdl.handle.net/2440/19471.
Texto completo da fonteviii, 280 leaves : ill ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 1992
"Scalability and interconnection issues in floorplan design and floorplan representations". 2001. http://library.cuhk.edu.hk/record=b5890773.
Texto completo da fonteThesis (M.Phil.)--Chinese University of Hong Kong, 2001.
Includes bibliographical references (leaves [116]-[122]).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgments --- p.iii
List of Figures --- p.viii
List of Tables --- p.xii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivations and Aims --- p.1
Chapter 1.2 --- Contributions --- p.3
Chapter 1.3 --- Dissertation Overview --- p.4
Chapter 2 --- Physical Design and Floorplanning in VLSI Circuits --- p.6
Chapter 2.1 --- VLSI Design Flow --- p.6
Chapter 2.2 --- Floorplan Design --- p.8
Chapter 2.2.1 --- Problem Formulation --- p.9
Chapter 2.2.2 --- Types of Floorplan --- p.10
Chapter 3 --- Floorplanning Representations --- p.12
Chapter 3.1 --- Polish Expression(PE) [WL86] --- p.12
Chapter 3.2 --- Bounded-Sliceline-Grid(BSG) [NFMK96] --- p.14
Chapter 3.3 --- Sequence Pair(SP) [MFNK95] --- p.17
Chapter 3.4 --- O-tree(OT) [GCY99] --- p.19
Chapter 3.5 --- B*-tree(BT) [CCWW00] --- p.21
Chapter 3.6 --- Corner Block List(CBL) [HHC+00] --- p.22
Chapter 4 --- Optimization Technique in Floorplan Design --- p.27
Chapter 4.1 --- General Optimization Methods --- p.27
Chapter 4.1.1 --- Simulated Annealing --- p.27
Chapter 4.1.2 --- Genetic Algorithm --- p.29
Chapter 4.1.3 --- Integer Programming Method --- p.31
Chapter 4.2 --- Shape Optimization --- p.33
Chapter 4.2.1 --- Shape Curve --- p.33
Chapter 4.2.2 --- Lagrangian Relaxation --- p.34
Chapter 5 --- Literature Review on Interconnect Driven Floorplanning --- p.37
Chapter 5.1 --- Placement Constraint in Floorplan Design --- p.37
Chapter 5.1.1 --- Boundary Constraints --- p.37
Chapter 5.1.2 --- Pre-placed Constraints --- p.39
Chapter 5.1.3 --- Range Constraints --- p.41
Chapter 5.1.4 --- Symmetry Constraints --- p.42
Chapter 5.2 --- Timing Analysis Method --- p.43
Chapter 5.3 --- Buffer Block Planning and Congestion Control --- p.45
Chapter 5.3.1 --- Buffer Block Planning --- p.45
Chapter 5.3.2 --- Congestion Control --- p.50
Chapter 6 --- Clustering Constraint in Floorplan Design --- p.53
Chapter 6.1 --- Problem Definition --- p.53
Chapter 6.2 --- Overview --- p.54
Chapter 6.3 --- Locating Neighboring Modules --- p.56
Chapter 6.4 --- Constraint Satisfaction --- p.62
Chapter 6.5 --- Multi-clustering Extension --- p.64
Chapter 6.6 --- Cost Function --- p.64
Chapter 6.7 --- Experimental Results --- p.65
Chapter 7 --- Interconnect Driven Multilevel Floorplanning Approach --- p.69
Chapter 7.1 --- Multilevel Partitioning --- p.69
Chapter 7.1.1 --- Coarsening Phase --- p.70
Chapter 7.1.2 --- Refinement Phase --- p.70
Chapter 7.2 --- Overview of Multilevel Floorplanner --- p.72
Chapter 7.3 --- Clustering Phase --- p.73
Chapter 7.3.1 --- Clustering Methods --- p.73
Chapter 7.3.2 --- Area Ratio Constraints --- p.75
Chapter 7.3.3 --- Clustering Velocity --- p.76
Chapter 7.4 --- Refinement Phase --- p.77
Chapter 7.4.1 --- Temperature Control --- p.79
Chapter 7.4.2 --- Cost Function --- p.80
Chapter 7.4.3 --- Handling Shape Flexibility --- p.80
Chapter 7.5 --- Experimental Results --- p.81
Chapter 7.5.1 --- Data Set Generation --- p.82
Chapter 7.5.2 --- Temperature Control --- p.82
Chapter 7.5.3 --- Packing Results --- p.83
Chapter 8 --- Study of Non-slicing Floorplan Representations --- p.89
Chapter 8.1 --- Analysis of Different Floorplan Representations --- p.89
Chapter 8.1.1 --- Complexity --- p.90
Chapter 8.1.2 --- Types of Floorplans --- p.92
Chapter 8.2 --- T-junction Orientation Property --- p.97
Chapter 8.3 --- Twin Binary Tree Representation for Mosaic Floorplan --- p.103
Chapter 8.3.1 --- Previous work --- p.103
Chapter 8.3.2 --- Twin Binary Tree Construction --- p.105
Chapter 8.3.3 --- Floorplan Construction --- p.109
Chapter 9 --- Conclusion --- p.114
Chapter 9.1 --- Summary --- p.114
Bibliography --- p.116
Chapter A --- Clustering Constraint Data Set --- p.123
Chapter A.1 --- ami33 --- p.123
Chapter A.1.1 --- One cluster --- p.123
Chapter A.1.2 --- Multi-cluster --- p.123
Chapter A.2 --- ami49 --- p.124
Chapter A.2.1 --- One cluster --- p.124
Chapter A.2.2 --- Multi-cluster --- p.124
Chapter A.3 --- playout --- p.124
Chapter A.3.1 --- One cluster --- p.124
Chapter A.3.2 --- Multi-cluster --- p.125
Chapter B --- Multilevel Data Set --- p.126
Chapter B.l --- data_100 --- p.126
Chapter B.2 --- data_200 --- p.127
Chapter B.3 --- data_300 --- p.129
Chapter B.4 --- data_400 --- p.131
Chapter B.5 --- data_500 --- p.133
"Task scheduling in VLSI circuit design: algorithm and bounds". 1999. http://library.cuhk.edu.hk/record=b5890147.
Texto completo da fonteThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 107-113).
Abstracts in English and Chinese.
List of Figures --- p.v
List of Tables --- p.vii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivation --- p.1
Chapter 1.2 --- Task Scheduling Problem and Lower Bound --- p.3
Chapter 1.3 --- Organization of the Thesis --- p.4
Chapter 2 --- Teamwork-Task Scheduling Problem --- p.5
Chapter 2.1 --- Problem Statement and Notations --- p.5
Chapter 2.2 --- Classification of Scheduling --- p.7
Chapter 2.3 --- Computational Complexity --- p.9
Chapter 2.4 --- Literature Review --- p.12
Chapter 2.4.1 --- Unrelated Machines Scheduling Environment --- p.12
Chapter 2.4.2 --- Multiprocessors Scheduling Problem --- p.13
Chapter 2.4.3 --- Search Algorithms --- p.14
Chapter 2.4.4 --- Lower Bounds --- p.15
Chapter 2.5 --- Summary --- p.17
Chapter 3 --- Fundamentals of Genetic Algorithms --- p.18
Chapter 3.1 --- Initial Inspiration --- p.18
Chapter 3.2 --- An Elementary Genetic Algorithm --- p.20
Chapter 3.2.1 --- "Genes, Chromosomes and Representations" --- p.20
Chapter 3.2.2 --- Population Pool --- p.22
Chapter 3.2.3 --- Evaluation Module --- p.22
Chapter 3.2.4 --- Reproduction Module --- p.22
Chapter 3.2.5 --- Genetic Operators: Crossover and Mutation --- p.23
Chapter 3.2.6 --- Parameters --- p.24
Chapter 3.3 --- A Brief Note to the Background Theory --- p.25
Chapter 3.4 --- Key Factors for the Success --- p.27
Chapter 4 --- Tasks Scheduling using Genetic Algorithms --- p.28
Chapter 4.1 --- Details of Scheduling Problem --- p.28
Chapter 4.2 --- Chromosome Coding --- p.32
Chapter 4.2.1 --- Job Priority Sequence --- p.33
Chapter 4.2.2 --- Engineer Priority Sequence --- p.33
Chapter 4.2.3 --- An Example Chromosome Interpretation --- p.34
Chapter 4.3 --- Fitness Evaluation --- p.37
Chapter 4.4 --- Parent Selection --- p.38
Chapter 4.5 --- Genetic Operators and Reproduction --- p.40
Chapter 4.5.1 --- Job Priority Crossover (JOB-CRX) --- p.40
Chapter 4.5.2 --- Job Priority Mutation (JOB-MUT) --- p.40
Chapter 4.5.3 --- Engineer Priority Mutation (ENG-MUT) --- p.42
Chapter 4.5.4 --- Reproduction: New Population --- p.42
Chapter 4.6 --- Replacement Strategy --- p.43
Chapter 4.7 --- The Complete Genetic Algorithm --- p.44
Chapter 5 --- Lower Bound on Optimal Makespan --- p.46
Chapter 5.1 --- Introduction --- p.46
Chapter 5.2 --- Definitions and Assumptions --- p.48
Chapter 5.2.1 --- Task Graph --- p.48
Chapter 5.2.2 --- Graph Partitioning --- p.49
Chapter 5.2.3 --- Activity and Load Density --- p.51
Chapter 5.2.4 --- Assumptions --- p.52
Chapter 5.3 --- Concepts of Lower Bound on the Minimal Time (LBMT) --- p.53
Chapter 5.3.1 --- Previous Bound (LBMTF) --- p.53
Chapter 5.3.2 --- Bound in other form --- p.54
Chapter 5.3.3 --- Improved Bound (LBMTJR) --- p.56
Chapter 5.4 --- Lower bound: Task graph reconstruction + LBMTJR --- p.59
Chapter 5.4.1 --- Problem reduction and Assumptions --- p.60
Chapter 5.4.2 --- Scenario I --- p.61
Chapter 5.4.3 --- Scenario II --- p.63
Chapter 5.4.4 --- An Example --- p.67
Chapter 6 --- Computational Results and Discussions --- p.73
Chapter 6.1 --- Parameterization of the GA --- p.73
Chapter 6.2 --- Computational Results --- p.75
Chapter 6.3 --- Performance Evaluation --- p.81
Chapter 6.3.1 --- Solution Quality --- p.81
Chapter 6.3.2 --- Computational Complexity --- p.86
Chapter 6.4 --- Effects of Machines Eligibility --- p.88
Chapter 6.5 --- Future Direction --- p.90
Chapter 7 --- Conclusion --- p.92
Chapter A --- Tasks data of problem sets in section 6.2 --- p.94
Chapter A.l --- Problem 1: 19 tasks --- p.95
Chapter A.2 --- Problem 2: 21 tasks --- p.97
Chapter A.3 --- Problem 3: 19 tasks --- p.99
Chapter A.4 --- Problem 4: 23 tasks --- p.101
Chapter A.5 --- Problem 5: 27 tasks --- p.104
Bibliography --- p.107
Moini, Alireza. "Design of a VLSI motion detector based upon the insect visual system". Thesis, 1993. http://hdl.handle.net/2440/111515.
Texto completo da fonteThesis (M.Eng.Sc.) -- University of Adelaide, Dept. of Electrical and Electronic Engineering, 1994
Livros sobre o assunto "Integrated circuits Very large scale integration Design and construction Mathematical models"
A, Levin, e Rabinovich E, eds. VLSI planarization: Methods, models, implementation. Dordrecht: Kluwer Academic, 1997.
Encontre o texto completo da fonteWalker, Duncan Moore Henry. Yield simulation for integrated circuits. Boston: Kluwer Academic Publishers, 1987.
Encontre o texto completo da fonteWong, D. F. Simulated annealing for VLSI design. Boston: Kluwer Academic, 1988.
Encontre o texto completo da fontePucknell, Douglas A. Fundamentals of digital logic design with VLSI circuit applications. Englewood Cliffs, NJ: Prentice Hall International, 1990.
Encontre o texto completo da fonteFundamentals of digital logic design, with VLSI applications. New York: Prentice Hall, 1990.
Encontre o texto completo da fonteMixed analog/digital VLSI devices and technology. New York: McGraw-Hill, 1994.
Encontre o texto completo da fonteTsividis, Yannis. Mixed analog-digital VLSI devices and technology: An introduction. New York: McGraw-Hill, 1996.
Encontre o texto completo da fonteMixed analog-digital VLSI devices and technology. Singapore: World Scientific, 2002.
Encontre o texto completo da fonte1959-, Nakhla Michel S., e Zhang Q. J, eds. Modeling and simulation of high speed VLSI interconnects. Boston: Kluwer Academic Publishers, 1994.
Encontre o texto completo da fonte1949-, Bank Randolph E., American Mathematical Society e Society for Industrial and Applied Mathematics., eds. Computational aspects of VLSI design with an emphasis on semiconductor device simulation. Providence, R.I: American Mathematical Society, 1990.
Encontre o texto completo da fonte