Literatura científica selecionada sobre o tema "Integrated circuits"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Integrated circuits".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Integrated circuits"
Wu, Jian, Yi-an Liu e Tingting Luo. "Research on Talents Training Mode for integrated circuit major under the Background of the Science-education and Industry-education Integration". SHS Web of Conferences 171 (2023): 03028. http://dx.doi.org/10.1051/shsconf/202317103028.
Texto completo da fonteShepherd, Paul, Dillon Kaiser, Michael Glover, Sonia Perez, A. Matt Francis e H. Alan Mantooth. "Integrated Protection Circuits for an NMOS Silicon Carbide Gate Driver Integrated Circuit". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, HITEC (1 de janeiro de 2014): 000218–23. http://dx.doi.org/10.4071/hitec-wp14.
Texto completo da fonteJackson, Keit, e JeffreyA Niehaus. "4752729 Test circuit for VSLI integrated circuits". Microelectronics Reliability 29, n.º 2 (janeiro de 1989): 291. http://dx.doi.org/10.1016/0026-2714(89)90600-8.
Texto completo da fonteLi, Zihan. "Application of Integrated Circuits in Cardiac Pacemakers". Highlights in Science, Engineering and Technology 62 (27 de julho de 2023): 84–89. http://dx.doi.org/10.54097/hset.v62i.10428.
Texto completo da fonteM., Kalmuratov, e Dauletmuratova R. "INTEGRATED CIRCUITS AND THEIR APPLICATIONS IN ELECTRONICS". American Journal of Applied Science and Technology 4, n.º 4 (1 de abril de 2024): 24–27. http://dx.doi.org/10.37547/ajast/volume04issue04-05.
Texto completo da fonteMoldovan, Emilia, Nazih Khaddaj Mallat e Serioja Ovidiu Tatu. "MHMIC Six-port Interferometer for W-band Transceivers: Design and Characterization". International Journal of Electrical and Computer Engineering (IJECE) 9, n.º 4 (1 de agosto de 2019): 2703. http://dx.doi.org/10.11591/ijece.v9i4.pp2703-2714.
Texto completo da fonteGuang, Yang, Bin Yu e Huang Hai. "Design of a High Performance CMOS Bandgap Voltage Reference". Advanced Materials Research 981 (julho de 2014): 90–93. http://dx.doi.org/10.4028/www.scientific.net/amr.981.90.
Texto completo da fonteLim, Taek-Kyu, Kunal Sandip Garud, Jae-Hyeong Seo, Moo-Yeon Lee e Dong-Yeon Lee. "Experimental Study on Heating Performances of Integrated Battery and HVAC System with Serial and Parallel Circuits for Electric Vehicle". Symmetry 13, n.º 1 (7 de janeiro de 2021): 93. http://dx.doi.org/10.3390/sym13010093.
Texto completo da fonteLim, Taek-Kyu, Kunal Sandip Garud, Jae-Hyeong Seo, Moo-Yeon Lee e Dong-Yeon Lee. "Experimental Study on Heating Performances of Integrated Battery and HVAC System with Serial and Parallel Circuits for Electric Vehicle". Symmetry 13, n.º 1 (7 de janeiro de 2021): 93. http://dx.doi.org/10.3390/sym13010093.
Texto completo da fonteKoo, Jae-Mo, Sungjun Im, Linan Jiang e Kenneth E. Goodson. "Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures". Journal of Heat Transfer 127, n.º 1 (1 de janeiro de 2005): 49–58. http://dx.doi.org/10.1115/1.1839582.
Texto completo da fonteTeses / dissertações sobre o assunto "Integrated circuits"
Загулов, Станіслав Русланович. "Flexible integrated circuits". Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/15297.
Texto completo da fontePettazzi, Federico. "Integrated soliton circuits". Besançon, 2008. http://www.theses.fr/2008BESA2001.
Texto completo da fonteIn the present thesis the development of three dimensional integrated optical circuits exploiting the technique of photorefractive bright spatial solitons is addressed. The considered host material is Lithium Niobate (LiNbO3) that benefits from a well developed technological standard and possesses a large photorefractive response. Ln the first part, main problems related to optical interconnections are identified, and a solution based on photorefractive bright spatial solitons is proposed. Ln a second Chapter, after a brief review of the material properties, the formation of photorefractive bright solitons is demonstrated both tlleoretically and experimentally. Subsequently, the occurrence of photorefractive self-focusing via second hannonic generation is investigated in conditions near and far from perfect phase matching. Experimetal and numerical analysis shows that, in the case near phase matching, a complexe interaction between nonlinear quadratic process and photorefractivity causes multimode propagation inside self induced waveguide. Proper initial conditions can however lead to stable singlemode operation with high second harmonic conversion efficiency. For strongly mismatched condition we demonstrate that self-focusing effect can occur in the near infrared spectrum due to the weak second harmonic generated signal. Finally, the potentiality of erbium doped LiNbO3 has been tested by performing material characterization and self-focusing experiments. Results show that erbium doped crystals are suitable for formation of self-induced waveguides. Realisation of optical ciruits performing optical amplification and lasing in self-induced waveguides can be envisioned
Gustard, N. C. "Optimizes switched-capacitor filter circuits for integrated circuit realization". Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294667.
Texto completo da fonteKapur, Kishen Narain. "Mechanical and electrical characterization of IC leads during fatigue cycling". Diss., Online access via UMI:, 2009.
Encontre o texto completo da fonteIncludes bibliographical references.
Lee, Kyung Tek. "Crosstalk fault test generation and hierarchical timing verification in VLSI digital circuits /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteFayed, Ayman Adel. "Adaptive techniques for analog and mixed signal integrated circuits". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1097519730.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xix, 232 p.; also includes graphics (some col.). Includes bibliographical references (p. 222-230).
Bakir, Muhannad S. "Sea of Leads electrical-optical polymer pillar chip I/O interconnections for gigascale integration". Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180010/unrestricted/bakir%5Fmuhannad%5Fs%5F200312%5Fphd.pdf.
Texto completo da fonteQazi, Masood. "Circuit design for embedded memory in low-power integrated circuits". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75645.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 141-152).
This thesis explores the challenges for integrating embedded static random access memory (SRAM) and non-volatile memory-based on ferroelectric capacitor technology-into lowpower integrated circuits. First considered is the impact of process variation in deep-submicron technologies on SRAM, which must exhibit higher density and performance at increased levels of integration with every new semiconductor generation. Techniques to speed up the statistical analysis of physical memory designs by a factor of 100 to 10,000 relative to the conventional Monte Carlo Method are developed. The proposed methods build upon the Importance Sampling simulation algorithm and efficiently explore the sample space of transistor parameter fluctuation. Process variation in SRAM at low-voltage is further investigated experimentally with a 512kb 8T SRAM test chip in 45nm SOI CMOS technology. For active operation, an AC coupled sense amplifier and regenerative global bitline scheme are designed to operate at the limit of on current and off current separation on a single-ended SRAM bitline. The SRAM operates from 1.2 V down to 0.57 V with access times from 400ps to 3.4ns. For standby power, a data retention voltage sensor predicts the mismatch-limited minimum supply voltage without corrupting the contents of the memory. The leakage power of SRAM forces the chip designer to seek non-volatile memory in applications such as portable electronics that retain significant quantities of data over long durations. In this scenario, the energy cost of accessing data must be minimized. This thesis presents a ferroelectric random access memory (FRAM) prototype that addresses the challenges of sensing diminishingly small charge under conditions favorable to low access energy with a time-to-digital sensing scheme. The 1 Mb IT1C FRAM fabricated in 130 nm CMOS operates from 1.5 V to 1.0 V with corresponding access energy from 19.2 pJ to 9.8 pJ per bit. Finally, the computational state of sequential elements interspersed in CMOS logic, also restricts the ability to power gate. To enable simple and fast turn-on, ferroelectric capacitors are integrated into the design of a standard cell register, whose non-volatile operation is made compatible with the digital design flow. A test-case circuit containing ferroelectric registers exhibits non-volatile operation and consumes less than 1.3 pJ per bit of state information and less than 10 clock cycles to save or restore with no minimum standby power requirement in-between active periods.
by Masood Qazi.
Ph.D.
Paroski, Andrew John. "Deform a new approach for redistributing placements /". Diss., Online access via UMI:, 2006.
Encontre o texto completo da fonteAgnihotri, Ameya Ramesh. "Combinatorial optimization techniques for VLSI placement". Diss., Online access via UMI:, 2007.
Encontre o texto completo da fonteLivros sobre o assunto "Integrated circuits"
Components, Philips. Integrated circuits. London: Philips Components Ltd, 1990.
Encontre o texto completo da fonteComponents, Philips. Integrated circuits. London: Philips Components Ltd, 1991.
Encontre o texto completo da fonteComponents, Philips. Integrated circuits. London: Philips Components Ltd, 1990.
Encontre o texto completo da fonteComponents, Philips. Integrated circuits. London: Philips Components Ltd, 1990.
Encontre o texto completo da fonteSemiconductors, Philips. Integrated circuits. Eindhoven: Philips Semiconductors, 1991.
Encontre o texto completo da fonteSemiconductors, Philips. Integrated circuits. Eindhoven: Philips Semiconductors, 1991.
Encontre o texto completo da fonteSemiconductors, Philips. Integrated circuits. Eindhoven: Philips Semiconductors, 1991.
Encontre o texto completo da fonteComponents, Philips. Integrated circuits. London: Philips Components Ltd, 1990.
Encontre o texto completo da fonteSemiconductors, Philips. Integrated circuits. Eindhoven: Philips Semiconductors, 1992.
Encontre o texto completo da fonteComponents, Philips. Integrated circuits. London: Philips Components Ltd, 1991.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Integrated circuits"
Sangwine, S. J. "Integrated circuits". In Electronic Components and Technology, 27–48. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-6934-7_3.
Texto completo da fonteSparkes, J. J. "Integrated circuits". In Semiconductor Devices, 173–88. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-7128-9_5.
Texto completo da fonteWarnes, Lionel. "Integrated circuits". In Electronic and Electrical Engineering, 190–96. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-15052-6_10.
Texto completo da fonteCraig, Edwin C. "Integrated Circuits". In Electronics via Waveform Analysis, 237–78. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4338-0_12.
Texto completo da fonteWarnes, Lionel. "Integrated circuits". In Electronic and Electrical Engineering, 193–200. London: Macmillan Education UK, 2003. http://dx.doi.org/10.1007/978-0-230-21633-4_10.
Texto completo da fonteGinsberg, Gerald L. "Integrated Circuits". In Electronic Equipment Packaging Technology, 29–43. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3542-3_2.
Texto completo da fonteBorel, J. "Integrated Circuits". In Silicon, 363–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09897-4_17.
Texto completo da fonteBarnes, John R. "Integrated Circuits". In Robust Electronic Design Reference Book, 424–513. New York, NY: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7830-7_20.
Texto completo da fonteSnepscheut, Jan L. A. "Integrated Circuits". In What Computing Is All About, 75–99. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2710-6_5.
Texto completo da fonteWinnacker, Albrecht. "Integrated Circuits". In The Physics Behind Semiconductor Technology, 221–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10314-8_14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Integrated circuits"
Brown, J. J., J. T. Gardner e S. R. Forrest. "Optically powered monolithically integrated logic circuits". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.tuc5.
Texto completo da fonteChandrasekhar, S., J. C. Campbell, A. G. Dentai, C. H. Joyner, G. J. Qua, A. H. Gnauck e M. D. Feuer. "An Integrated InP/InGaAs Heterojunction Biploar Photoreceiver". In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/igwo.1989.tucc3.
Texto completo da fonteRodwell, M. J. W., K. J. Weingarten e D. M. Bloom. "Picosecond Sampling of Integrated Circuits". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/peo.1987.wa2.
Texto completo da fonteGrebel, H., e W. Zhong. "Holographic integrated optical circuits". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.me3.
Texto completo da fonte"Integrated Circuits". In 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.284031.
Texto completo da fonte"Integrated Circuits". In 2019 International Semiconductor Conference (CAS). IEEE, 2019. http://dx.doi.org/10.1109/smicnd.2019.8923890.
Texto completo da fonteБогданов, Даниил Сергеевич, e Светлана Анатольевна Микаева. "INTEGRATED CIRCUITS". In Высокие технологии и инновации в науке: сборник избранных статей Международной научной конференции (Санкт-Петербург, Май 2022). Crossref, 2022. http://dx.doi.org/10.37539/vt197.2022.42.90.008.
Texto completo da fonte"Integrated Circuits". In 2023 International Semiconductor Conference (CAS). IEEE, 2023. http://dx.doi.org/10.1109/cas59036.2023.10303675.
Texto completo da fonteKeyes, Edward, e Jason Abt. "An Advanced Integrated Circuit Analysis System". In ISTFA 2006. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.istfa2006p0398.
Texto completo da fonteValdmanis, J. A. "Progress in electrooptic sampling of highspeed devices and integrated circuits". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.tue2.
Texto completo da fonteRelatórios de organizações sobre o assunto "Integrated circuits"
Gunn, Cary. Nanophotonic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, maio de 2003. http://dx.doi.org/10.21236/ada423912.
Texto completo da fonteRamaswamy, Ramu V. Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, março de 1998. http://dx.doi.org/10.21236/ada340630.
Texto completo da fonteFetterman, Harold. Nonlinear Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1998. http://dx.doi.org/10.21236/ada386985.
Texto completo da fonteMittra, Raj. Millimeter-Wave Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1985. http://dx.doi.org/10.21236/ada161444.
Texto completo da fonteHeimlich, Michael, Karu Esselle e L. Matekovits. 2D Electrically Tuneable EBG Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada605325.
Texto completo da fonteMcColl, Malcolm. Voltage-Tunable Microwave Monolithic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, março de 1988. http://dx.doi.org/10.21236/ada193003.
Texto completo da fonteKurdahi, F. J., e A. C. Parker. Area Estimation of VLSI Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, julho de 1985. http://dx.doi.org/10.21236/ada160335.
Texto completo da fonteLynn, D. K., e J. B. McCormick. Progress in radiation immune thermionic integrated circuits. Office of Scientific and Technical Information (OSTI), agosto de 1985. http://dx.doi.org/10.2172/6345437.
Texto completo da fonteMartin, Alain J., Mika Nystroem e Catherine G. Wong. Design Tools for Integrated Asynchronous Electronic Circuits. Fort Belvoir, VA: Defense Technical Information Center, junho de 2003. http://dx.doi.org/10.21236/ada417138.
Texto completo da fonteShakouri, Ali, Bin Liu, Patrick Abraham e John E. Bowers. 3D Photonic Integrated Circuits for WDM Applications. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1998. http://dx.doi.org/10.21236/ada461796.
Texto completo da fonte