Siga este link para ver outros tipos de publicações sobre o tema: Integer programming.

Artigos de revistas sobre o tema "Integer programming"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Integer programming".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Wampler, Joe F., e Stephen E. Newman. "Integer Programming". College Mathematics Journal 27, n.º 2 (março de 1996): 95. http://dx.doi.org/10.2307/2687396.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wampler, Joe F., e Stephen E. Newman. "Integer Programming". College Mathematics Journal 27, n.º 2 (março de 1996): 95–100. http://dx.doi.org/10.1080/07468342.1996.11973758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cornu�jols, G�rard, e William R. Pulleyblank. "Integer programming". Mathematical Programming 98, n.º 1-3 (1 de setembro de 2003): 1–2. http://dx.doi.org/10.1007/s10107-003-0417-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kara, Imdat, e Halil Ibrahim Karakas. "Integer Programming Formulations For The Frobenius Problem". International Journal of Pure Mathematics 8 (28 de dezembro de 2021): 60–65. http://dx.doi.org/10.46300/91019.2021.8.8.

Texto completo da fonte
Resumo:
The Frobenius number of a set of relatively prime positive integers α1,α2,…,αn such that α1< α2< …< αn, is the largest integer that can not be written as a nonnegative integer linear combination of the given set. Finding the Frobenius number is known as the Frobenius problem, which is also named as the coin exchange problem or the postage stamp problem. This problem is closely related with the equality constrained integer knapsack problem. It is known that this problem is NP-hard. Extensive research has been conducted for finding the Frobenius number of a given set of positive integers. An exact formula exists for the case n=2 and various formulas have been derived for all special cases of n = 3. Many algorithms have been proposed for n≥4. As far as we are aware, there does not exist any integer programming approach for this problem which is the main motivation of this paper. We present four integer linear programming formulations about the Frobenius number of a given set of positive integers. Our first formulation is used to check if a given positive integer is the Frobenius number of a given set of positive integers. The second formulation aims at finding the Frobenius number directly. The third formulation involves the residue classes with respect to the least member of the given set of positive integers, where a residue table is computed comprising all values modulo that least member, and the Frobenius number is obtained from there. Based on the same approach underlying the third formulation, we propose our fourth formulation which produces the Frobenius number directly. We demonstrate how to use our formulations with several examples. For illustrative purposes, some computa-tional analysis is also presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Freire, Alexandre S., Eduardo Moreno e Juan Pablo Vielma. "An integer linear programming approach for bilinear integer programming". Operations Research Letters 40, n.º 2 (março de 2012): 74–77. http://dx.doi.org/10.1016/j.orl.2011.12.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

He, Deng Xu, e Liang Dong Qu. "Population Migration Algorithm for Integer Programming and its Application in Cutting Stock Problem". Advanced Materials Research 143-144 (outubro de 2010): 899–904. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.899.

Texto completo da fonte
Resumo:
For integer programming, there exist some difficulties and problems for the direct applications of population migration algorithm (PMA) due to the variables belonging to the set of integers. In this paper, a novel PMA is proposed for integer programming which evolves on the set of integer space. Several functions and cutting stock problem simulation results show that the proposed algorithm is significantly superior to other algorithms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gomory, Ralph E. "Early Integer Programming". Operations Research 50, n.º 1 (fevereiro de 2002): 78–81. http://dx.doi.org/10.1287/opre.50.1.78.17793.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Feautrier, Paul. "Parametric integer programming". RAIRO - Operations Research 22, n.º 3 (1988): 243–68. http://dx.doi.org/10.1051/ro/1988220302431.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lee, Jon, e Adam N. Letchford. "Mixed integer programming". Discrete Optimization 4, n.º 1 (março de 2007): 1–2. http://dx.doi.org/10.1016/j.disopt.2006.10.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Onn, Shmuel. "Robust integer programming". Operations Research Letters 42, n.º 8 (dezembro de 2014): 558–60. http://dx.doi.org/10.1016/j.orl.2014.10.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Bienstock, Daniel, e William Cook. "Computational integer programming". Mathematical Programming 81, n.º 2 (abril de 1998): 147–48. http://dx.doi.org/10.1007/bf01581102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Schaefer, Andrew J. "Inverse integer programming". Optimization Letters 3, n.º 4 (16 de junho de 2009): 483–89. http://dx.doi.org/10.1007/s11590-009-0131-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Lageweg, B. J., J. K. Lenstra, A. H. G. RinnooyKan, L. Stougie e A. H. G. Rinnooy Kan. "STOCHASTIC INTEGER PROGRAMMING BY DYNAMIC PROGRAMMING". Statistica Neerlandica 39, n.º 2 (junho de 1985): 97–113. http://dx.doi.org/10.1111/j.1467-9574.1985.tb01131.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Williams, H. P. "Logic applied to integer programming and integer programming applied to logic". European Journal of Operational Research 81, n.º 3 (março de 1995): 605–16. http://dx.doi.org/10.1016/0377-2217(93)e0359-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Fujiwara, Hiroshi, Hokuto Watari e Hiroaki Yamamoto. "Dynamic Programming for the Subset Sum Problem". Formalized Mathematics 28, n.º 1 (1 de abril de 2020): 89–92. http://dx.doi.org/10.2478/forma-2020-0007.

Texto completo da fonte
Resumo:
SummaryThe subset sum problem is a basic problem in the field of theoretical computer science, especially in the complexity theory [3]. The input is a sequence of positive integers and a target positive integer. The task is to determine if there exists a subsequence of the input sequence with sum equal to the target integer. It is known that the problem is NP-hard [2] and can be solved by dynamic programming in pseudo-polynomial time [1]. In this article we formalize the recurrence relation of the dynamic programming.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

De Loera, Jesús A., Raymond Hemmecke, Shmuel Onn e Robert Weismantel. "N-fold integer programming". Discrete Optimization 5, n.º 2 (maio de 2008): 231–41. http://dx.doi.org/10.1016/j.disopt.2006.06.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Williams, H. P., e J. N. Hooker. "Integer programming as projection". Discrete Optimization 22 (novembro de 2016): 291–311. http://dx.doi.org/10.1016/j.disopt.2016.08.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Jan, Rong-Hong, e Maw-Sheng Chern. "Nonlinear integer bilevel programming". European Journal of Operational Research 72, n.º 3 (fevereiro de 1994): 574–87. http://dx.doi.org/10.1016/0377-2217(94)90424-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Dua, Vivek. "Mixed integer polynomial programming". Computers & Chemical Engineering 72 (janeiro de 2015): 387–94. http://dx.doi.org/10.1016/j.compchemeng.2014.07.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Atamtürk, Alper, e Martin W. P. Savelsbergh. "Integer-Programming Software Systems". Annals of Operations Research 140, n.º 1 (novembro de 2005): 67–124. http://dx.doi.org/10.1007/s10479-005-3968-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Weintraub P., Andres. "Integer programming in forestry". Annals of Operations Research 149, n.º 1 (2 de dezembro de 2006): 209–16. http://dx.doi.org/10.1007/s10479-006-0105-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Firmansah, Fery, Muhammad Ridlo Yuwono e Fika Aisyah Munif. "Application of integer linear program in optimizing convection sector production results using branch and bound method". International Journal of Applied Mathematics, Sciences, and Technology for National Defense 1, n.º 1 (27 de janeiro de 2023): 13–20. http://dx.doi.org/10.58524/app.sci.def.v1i1.173.

Texto completo da fonte
Resumo:
This study aimed to determine the application of the integer program in optimizing the production of the convection sector. Integer linear programming is a special form of linear programming in which the decision variable solutions are integers. Ayyumnah store as one part of the convection sectors with a home-scale does not have an appropriate strategy to optimize profits with limited materials owned. The method used in this study is an integer program with the branch and bound method. The result of this research is the optimal amount of production of long shirts and tunics at the Ayyumnah Store with maximum profit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Klamroth, Kathrin, Jørgen Tind e Sibylle Zust. "Integer Programming Duality in Multiple Objective Programming". Journal of Global Optimization 29, n.º 1 (maio de 2004): 1–18. http://dx.doi.org/10.1023/b:jogo.0000035000.06101.07.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Marchand, Hugues, Alexander Martin, Robert Weismantel e Laurence Wolsey. "Cutting planes in integer and mixed integer programming". Discrete Applied Mathematics 123, n.º 1-3 (novembro de 2002): 397–446. http://dx.doi.org/10.1016/s0166-218x(01)00348-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Gazzah, H., e A. K. Khandani. "Optimum non-integer rate allocation using integer programming". Electronics Letters 33, n.º 24 (1997): 2034. http://dx.doi.org/10.1049/el:19971417.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Forrest, J. J. H., e J. A. Tomlin. "Branch and bound, integer, and non-integer programming". Annals of Operations Research 149, n.º 1 (2 de dezembro de 2006): 81–87. http://dx.doi.org/10.1007/s10479-006-0112-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Domínguez, Luis F., e Efstratios N. Pistikopoulos. "Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems". Computers & Chemical Engineering 34, n.º 12 (dezembro de 2010): 2097–106. http://dx.doi.org/10.1016/j.compchemeng.2010.07.032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Maslikhah, Siti. "METODE PEMECAHAN MASALAH INTEGER PROGRAMMING". At-Taqaddum 7, n.º 2 (6 de fevereiro de 2017): 211. http://dx.doi.org/10.21580/at.v7i2.1203.

Texto completo da fonte
Resumo:
<em>Decision variables in the problem solving linear programs are often in the form of fractions. In some cases there are specific desires the solution in the form of an integer (integer). Integer solution is obtained by way of rounding does not warrant being in the area of fisibel. To obtain integer solutions, among others, by the method of Cutting Plane Algorithm or Branch and Bound. The advantages of the method of Cutting Plane Algorithm is quite effectively shorten the matter, while the advantages of the method of Branch and Bound the error level is to have a little but requires quite a long calculation.</em>
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Earnshaw, Stephanie R., e Susan L. Dennett. "Integer/Linear Mathematical Programming Models". PharmacoEconomics 21, n.º 12 (2003): 839–51. http://dx.doi.org/10.2165/00019053-200321120-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Lee, D.-H., H.-J. Kim, G. Choi e P. Xirouchakis. "Disassembly scheduling: Integer programming models". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218, n.º 10 (outubro de 2004): 1357–72. http://dx.doi.org/10.1243/0954405042323586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Gavish, Bezalel, Fred Glover e Hasan Pirkul. "Surrogate Constraints in Integer Programming". Journal of Information and Optimization Sciences 12, n.º 2 (maio de 1991): 219–28. http://dx.doi.org/10.1080/02522667.1991.10699064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Wilson, J. M. "Crossword Compilation Using Integer Programming". Computer Journal 32, n.º 3 (1 de março de 1989): 273–75. http://dx.doi.org/10.1093/comjnl/32.3.273.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Feng, Zhiguo, e Ka-Fai Cedric Yiu. "Manifold relaxations for integer programming". Journal of Industrial & Management Optimization 10, n.º 2 (2014): 557–66. http://dx.doi.org/10.3934/jimo.2014.10.557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Gupta, Renu, e M. C. Puri. "Bicriteria integer quadratic programming problems". Journal of Interdisciplinary Mathematics 3, n.º 2-3 (junho de 2000): 133–48. http://dx.doi.org/10.1080/09720502.2000.10700277.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Williams, H. "Integer programming and pricing revisited". IMA Journal of Management Mathematics 8, n.º 3 (1 de março de 1997): 203–13. http://dx.doi.org/10.1093/imaman/8.3.203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Hoşten, Serkan, e Bernd Sturmfels. "Computing the integer programming gap". Combinatorica 27, n.º 3 (maio de 2007): 367–82. http://dx.doi.org/10.1007/s00493-007-2057-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hua, Hao, Ludger Hovestadt, Peng Tang e Biao Li. "Integer programming for urban design". European Journal of Operational Research 274, n.º 3 (maio de 2019): 1125–37. http://dx.doi.org/10.1016/j.ejor.2018.10.055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Gomory, Ralph E., e Ellis L. Johnson. "An approach to integer programming". Mathematical Programming 96, n.º 2 (1 de maio de 2003): 181. http://dx.doi.org/10.1007/s10107-003-0382-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Schultz, Rüdiger. "Stochastic programming with integer variables". Mathematical Programming 97, n.º 1 (julho de 2003): 285–309. http://dx.doi.org/10.1007/s10107-003-0445-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Röglin, Heiko, e Berthold Vöcking. "Smoothed analysis of integer programming". Mathematical Programming 110, n.º 1 (5 de janeiro de 2007): 21–56. http://dx.doi.org/10.1007/s10107-006-0055-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zou, Jikai, Shabbir Ahmed e Xu Andy Sun. "Stochastic dual dynamic integer programming". Mathematical Programming 175, n.º 1-2 (2 de março de 2018): 461–502. http://dx.doi.org/10.1007/s10107-018-1249-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Klabjan, Diego. "Subadditive approaches in integer programming". European Journal of Operational Research 183, n.º 2 (dezembro de 2007): 525–45. http://dx.doi.org/10.1016/j.ejor.2006.10.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Sahinidis, Nikolaos V. "Mixed-integer nonlinear programming 2018". Optimization and Engineering 20, n.º 2 (24 de abril de 2019): 301–6. http://dx.doi.org/10.1007/s11081-019-09438-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Adams, Warren P., e Hanif D. Sherali. "Mixed-integer bilinear programming problems". Mathematical Programming 59, n.º 1-3 (março de 1993): 279–305. http://dx.doi.org/10.1007/bf01581249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Allahviranloo, T., Kh Shamsolkotabi, N. A. Kiani e L. Alizadeh. "Fuzzy integer linear programming problems". International Journal of Contemporary Mathematical Sciences 2 (2007): 167–81. http://dx.doi.org/10.12988/ijcms.2007.07010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Vessal, Ahmad. "COURSE SEQUENCING USING INTEGER PROGRAMMING". Journal of Academy of Business and Economics 13, n.º 4 (1 de outubro de 2013): 97–102. http://dx.doi.org/10.18374/jabe-13-4.10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Williams, H. P. "The problem with integer programming". IMA Journal of Management Mathematics 22, n.º 3 (5 de outubro de 2010): 213–30. http://dx.doi.org/10.1093/imaman/dpq014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Lovász, László. "Integer sequences and semidefinite programming". Publicationes Mathematicae Debrecen 56, n.º 3-4 (1 de abril de 2000): 475–79. http://dx.doi.org/10.5486/pmd.2000.2362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Labbé, Martine, Alfredo Marín e Antonio M. Rodríguez-Chía. "Lexicographical Order in Integer Programming". Vietnam Journal of Mathematics 45, n.º 3 (27 de julho de 2016): 459–76. http://dx.doi.org/10.1007/s10013-016-0220-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Raghavan, Prabhakar. "Integer programming in VLSI design". Discrete Applied Mathematics 40, n.º 1 (novembro de 1992): 29–43. http://dx.doi.org/10.1016/0166-218x(92)90020-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia