Literatura científica selecionada sobre o tema "Insulin metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Insulin metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Insulin metabolism"
Ukkola, O. "Ghrelin and insulin metabolism". European Journal of Clinical Investigation 33, n.º 3 (março de 2003): 183–85. http://dx.doi.org/10.1046/j.1365-2362.2003.01112.x.
Texto completo da fonteDuckworth, William C., Frederick G. Hamel e Daniel E. Peavy. "Hepatic metabolism of insulin". American Journal of Medicine 85, n.º 5 (novembro de 1988): 71–76. http://dx.doi.org/10.1016/0002-9343(88)90399-3.
Texto completo da fonteHeesom, K. J., M. Harbeck, C. R. Kahn e R. M. Denton. "Insulin action on metabolism". Diabetologia 40 (19 de setembro de 1997): S3—S9. http://dx.doi.org/10.1007/s001250051388.
Texto completo da fonteBeardsall, Kathryn, Barbro M. S. Diderholm e David B. Dunger. "Insulin and carbohydrate metabolism". Best Practice & Research Clinical Endocrinology & Metabolism 22, n.º 1 (fevereiro de 2008): 41–55. http://dx.doi.org/10.1016/j.beem.2007.10.001.
Texto completo da fonteHeesom, K. J., M. Harbeck, C. R. Kahn e R. M. Denton. "Insulin action on metabolism". Diabetologia 40, S3 (março de 1997): B3—B9. http://dx.doi.org/10.1007/bf03168179.
Texto completo da fonteHarned, Leighton Kahle, e Edward Chin. "PSUN278 Factitious hypoglycemia, diagnostic delay due to insulin assay failure to detect insulin analogues." Journal of the Endocrine Society 6, Supplement_1 (1 de novembro de 2022): A403. http://dx.doi.org/10.1210/jendso/bvac150.838.
Texto completo da fonteKagotho, Elizabeth. "Insulin-Mediated Glucose Metabolism: An Atherogenic Lipid Profile of Fructose Consumption". Endocrinology and Disorders 2, n.º 2 (27 de fevereiro de 2018): 01–02. http://dx.doi.org/10.31579/2640-1045/096.
Texto completo da fonteKagotho, Elizabeth. "Insulin-Mediated Glucose Metabolism: An Atherogenic Lipid Profile of Fructose Consumption". Endocrinology and Disorders 2, n.º 2 (15 de fevereiro de 2018): 01–02. http://dx.doi.org/10.31579/2640-1045/021.
Texto completo da fonteKusters, Yvo H. A. M., e Eugene J. Barrett. "Muscle microvasculature's structural and functional specializations facilitate muscle metabolism". American Journal of Physiology-Endocrinology and Metabolism 310, n.º 6 (15 de março de 2016): E379—E387. http://dx.doi.org/10.1152/ajpendo.00443.2015.
Texto completo da fontePiloquet, H., V. Ferchaud-Roucher, F. Duengler, Y. Zair, P. Maugere e M. Krempf. "Insulin effects on acetate metabolism". American Journal of Physiology-Endocrinology and Metabolism 285, n.º 3 (setembro de 2003): E561—E565. http://dx.doi.org/10.1152/ajpendo.00042.2003.
Texto completo da fonteTeses / dissertações sobre o assunto "Insulin metabolism"
Vidal, Alabró Anna. "Estudi de l’activació de la glucocinasa (GKA456V) en fetge perivenós". Doctoral thesis, Universitat de Barcelona, 2011. http://hdl.handle.net/10803/32022.
Texto completo da fonteSynthetic glucokinase activators have been used in the context of type 2 diabetes therapy, mainly for their insulin secretagogue activity. However, the impact of these drugs on liver GK has not been studied in vivo. Since GK activators and activating GK mutations confer identical kinetic properties to GK, we hypothesize that hepatic overexpression of a mutated form of GK, GKA456V, described in a patient with Persistent Hyperinsulinemic Hypoglycemia of Infancy (PHHI), shall mimic the liver-specific effects of GK-activating drugs. GKA456V was overexpressed in the liver of streptozotocin diabetic mice and also in healthy mice. Metabolite profiling in serum and liver extracts, together with key components of glucose and lipid homeostasis, were analyzed and compared to GK wild-type transfected animals. Cell compartmentalization of mutant and wild-type GK was also examined in vivo. In the type 1 diabetic mice, GKA456V overexpression markedly reduced blood glucose in the absence of dislipidemia, in contrast to wild-type GK-overexpressing mice. Enhanced glucose utilization did not correlate with glycogen synthesis or lactate production. PEPCK mRNA was not affected, whereas the mRNA for the catalytic subunit of glucose-6-phosphatase was upregulated ~4-fold in the liver of GKA456V treated animals. Moreover, GKA456V was not translocated to the nucleus after a short fast, confirming that this activating mutation disrupted GKRP regulation. In healthy mice, the overexpression of hepatic GK resulted in insulin resistance. Otherwise, GKA456V overepxressing animals were not insulin resistant. They showed increased mRNA and protein content of the catalytic subunit of glucose-6-phosphatase in the liver, and an idnuction of catabolism in their adipose tissue. Our results validate liver specific GK activation as a strategy for diabetes therapy and provide new insights into the complex GK regulatory network.
Collison, Mary Williamson. "Insulin signalling in insulin resistance and cardiovascular disease syndromes". Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366184.
Texto completo da fonteKershner, David. "Oral Glucose Insulin Secretion Test for Identifying Patients with Insulin Resistance". ScholarWorks, 2018. https://scholarworks.waldenu.edu/dissertations/5634.
Texto completo da fonteMashhedi, Haider. "Implicating insulin in neoplastic growth and metabolism". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104681.
Texto completo da fonteCompte tenu de l'accumulation de preuves liant l'obésité à un nombre accru de cancers, il y a un grand intérêt à définir les mécanismes par lesquels l'obésité influe sur la croissance néoplasique. Des niveaux d'insuline élevés sont couramment associés à l'obésité ou au «syndrome métabolique», ce qui fait que le récepteur de l'insuline est considéré comme une cible moléculaire potentiellement importante pour le traitement de certains cancers. Pour étudier les effets de l'atténuation de la signalisation de l'insuline sur la croissance du modèle expérimental du cancer du sein chez la souris, la lignée cellulaire insulino-sensible 4T1 in vivo, nous avons comparé les effets d'une déficience à l'insuline induite par l'alloxan à celle de BMS-536924, un inhibiteur des kinases tyrosine des récepteurs de l'insuline et d'IGF-I. Les deux interventions ont montré une activité anti-néoplasique, mais seulement l'alloxan a présenté une toxicité métabolique. L'inhibition des récepteurs d'insuline n'a occasionné qu'une faible hyperglycémie et le traitement avec BMS-536924 a été bien toléré. Nous avons attribué ce phénomène à des facteurs pharmacocinétiques en mesurant l'accumulation de drogue dans les tissus et pour déterminer si le BMS-536924 abolit l'absorption insulino-dépendante du glucose, nous avons mesuré la quantité de glucose utilisé dans le muscle. Nos données indiquent que la captation insulino-dépendante du glucose par le muscle est restée intacte. Ainsi, la distribution tissu-spécifique du BMS-536924 peut être responsable de l'activité anti-néoplasique sans toxicité métabolique grave, ce qui indique que le ciblage pharmacologique du récepteur de l'insuline dans la maladie néoplasique peut être efficace.Les études épidémiologiques ont montré que les patients diabétiques de type II prenant le médicament metformine (un biguanide) ont un risque réduit de développer un cancer ou d'un taux de mortalité due au cancer plus faible par rapport aux patients diabétiques de type II suivant d'autres thérapies. Nous avons déjà montré que la metformine agit comme un inhibiteur de la croissance des cellules tumorales in vitro en phosphorylant l'AMPK d'une manière dépendante de la dose. Outre l'activation de l'AMPK, qui est observée dans les cellules tumorales in vitro et in vivo, la metformine provoque aussi une diminution des taux d'insuline. Ceci est un effet secondaire de la réduction du taux de glycémie dans un contexte de diabète de type II. La tomographie par émission de positons (TEP ou PET) est une technique d'imagerie qui mesure le taux d'utilisation du glucose par les cellules cancéreuses à l'aide de l'analogue du glucose radiomarqué 18F-2-Fluoro-2-Désoxy-D-Glucose (FDG). Nous étions intéressés par les effets de la metformine sur la captation du glucose par les tumeurs d'adénocarcinome de côlon, MC38, allogreffées chez des souris qui ont été nourris avec une diète à haute teneur énergétique (induisant un phénotype diabétique de type II), ou un régime contrôle. Nos résultats montrent que la metformine abolie l'augmentation des niveaux sériques d'insuline, l'activation du récepteur d'insuline dans les tumeurs ainsi que l'absorption du FDG par les tumeur chez les souris ayant un régime riche en énergie et que la metformine n'a aucun effet sur ces mesures chez les souris ayant une diète contrôle. Ceci suggère que pour un sous-ensemble de néoplasmes, le régime alimentaire et le taux d'insuline influencent l'absorption du glucose par les cellules tumorales ce qui pourrait avoir une pertinence clinique dans les prochaines études clinique visant l'évaluation de l'activité anti-néoplasique de la metformine.
Shmueli, Ehoud. "Glucose metabolism and insulin resistance in cirrhosis". Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308777.
Texto completo da fonteLaberge, Marie-Kristine. "Nck1 is required for ER stress-induced insulin resistance and regulation of IRS1-dependent insulin signalling". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111950.
Texto completo da fonteSanderson, Alison Louise. "Regulation of skeletal muscle metabolism". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318615.
Texto completo da fonteField, Polly Ann. "The effects of insulin resistance on chylomicron metabolism". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302120.
Texto completo da fonteDeAngelis, Anthony Michael. "CEACAM1 : a link between insulin and lipid metabolism". Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1243943993.
Texto completo da fonte"In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Title from title page of PDF document. Bibliography: p. 57-61, p. 20-145.
Nygren, Jonas. "The sites and mechanisms of postoperative insulin resistance /". Stockholm, 1997. http://diss.kib.ki.se/1997/91-628-2695-6.
Texto completo da fonteLivros sobre o assunto "Insulin metabolism"
Markussen, Jan. Human insulin by tryptic transpeptidations of porcine insulin and biosynthetic procursors. Lancaster: MTP Press, 1987.
Encontre o texto completo da fonteHuman insulin by tryptic transpeptidations of porcine insulin and biosynthetic precursors. Lancaster: MTP Press, 1987.
Encontre o texto completo da fonteJoseph, Goren H., Hollenberg Morley D. 1942- e Roncari Daniel A. K, eds. Insulin action and diabetes. New York: Raven Press, 1988.
Encontre o texto completo da fonteEuropean Symposium on Metabolism (8th 2002 Padua, Italy). The metabolic syndrome: Diabetes, obesity, hyperlipidemia & hypertension : proceedings of the 8th European Symposium on Metabolism, held in Padua, Italy, between 2 and 5 October 2002. Editado por Crepaldi Gaetano, Tiengo Antonio e Avogaro Angelo. Amsterdam: Elsevier, 2003.
Encontre o texto completo da fonteṾisut ha-energyah ba-guf: Pereḳ be-endoḳrinologyah. [Tel Aviv]: Maṭkal/Ḳetsin ḥinukh rashi/Gale-Tsahal, Miśrad ha-biṭaḥon, 1985.
Encontre o texto completo da fonteTrumbach, Sabine. Glukose-Toleranz und Insulin-Sekretion unter simulierter Schwerelosigkeit. Koln: DFLVR, 1988.
Encontre o texto completo da fonteIwar, Klimes, ed. Dietary lipids and insulin action. New York, N.Y: New York Academy of Sciences, 1993.
Encontre o texto completo da fonteGaetano, Crepaldi, Tiengo Antonio e Manzato E, eds. Diabetes, obesity, and hyperlipidemias, V: The plurimetabolic syndrome : proceedings of the European Symposium on Metabolism, Padova, 24-26 May 1993. Amsterdam: Excerpta Medica, 1993.
Encontre o texto completo da fonteDorrestijn, Jannette. Signal transduction related to the metabolic action of insulin. [Leiden: University of Leiden, 1998.
Encontre o texto completo da fonte1929-, Shigeta Yukio, Kobayashi Masashi Dr e Olefsky Jerrold M, eds. Recent advances in insulin action and its disorders: Proceedings of the International Symposium on Insulin Action and Its Disorders, Shiga, 16 May 1990. Amsterdam: Excerpta Medica, 1991.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Insulin metabolism"
Larner, J. "Effects of Insulin on Glycogen Metabolism". In Insulin, 367–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74098-5_16.
Texto completo da fonteBressler, R., e J. J. Bahl. "Insulin Regulation of Metabolism Relevant to Gluconeogenesis". In Insulin, 451–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74098-5_20.
Texto completo da fonteFrayn, Keith N., e Fredrik Karpe. "Insulin Action on Lipid Metabolism". In Insulin Resistance, 87–103. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470011327.ch3.
Texto completo da fonteKonrad, Daniel, Assaf Rudich e Amira Klip. "Insulin-Mediated Regulation of Glucose Metabolism". In Insulin Resistance, 63–85. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470011327.ch2.
Texto completo da fonteHileman, Stanley M., e Christian Bjørbaek. "Central Regulation of Peripheral Glucose Metabolism". In Insulin Resistance, 179–206. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470011327.ch7.
Texto completo da fonteGreenlund, Laura J. S., e K. Sreekumaran Nair. "The Effect of Insulin on Protein Metabolism". In Insulin Resistance, 105–32. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470011327.ch4.
Texto completo da fonteMathias, Dietger. "Metabolism and Insulin Effect". In Fit and Healthy from 1 to 100 with Nutrition and Exercise, 143. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65961-8_67.
Texto completo da fontePatnaik, Akash, Jason W. Locasale e Lewis C. Cantley. "Cancer Cell Metabolism". In Insulin-like Growth Factors and Cancer, 245–61. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0598-6_13.
Texto completo da fonteGuest, Paul C. "Insulin Resistance in Schizophrenia". In Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12668-1_1.
Texto completo da fonteCarmena, R., J. F. Ascaso, A. Merchante e F. J. Ampudia. "Insulin Resistance and Lipid Disorders". In Drugs Affecting Lipid Metabolism, 379–88. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0311-1_44.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Insulin metabolism"
Senhorinha, Gláucia Maria, Arlys Emanuel Mendes da Silva Santos e Douglas Daniel Dophine. "The role of metabolic syndrome in Alzheimer’s disease". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.319.
Texto completo da fonteEl-fadl, Rihab, Nasser Rizk, Amena Fadel e Abdelrahman El Gamal. "The Profile of Hepatic Gene Expression of Glucose Metabolism in Mice on High Fat Diet". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0213.
Texto completo da fonteRad, Milad Ghiasi, Aditya Immaneni, Megan McCabe, Massimiliano Pierobon e Juan Cui. "A simulation model of glucose-insulin metabolism and implementation on OSG". In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217939.
Texto completo da fonteStaal, Odd Martin, Anders Lyngvi Fougner, Steinar Saelid e Oyvind Stavdahl. "Glucose-insulin metabolism model reduction and parameter selection using sensitivity analysis". In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814949.
Texto completo da fonteWardelmann, K., M. Rath, JP Castro, S. Blümel, M. Schell, R. Hauffe, C. Chudoba et al. "Central acting Hsp10 regulates mitochondrial function, insulin sensitivity and impacts liver metabolism". In Diabetes Kongress 2021 – 55. Jahrestagung der DDG. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1727356.
Texto completo da fonteCampos, L. M., A. G. Rius, D. Kirovski, J. A. D. R. N. Appuhamy, T. F. V. Bompadre e M. D. Hanigan. "Mammary gland amino acid affinity in response to different levels of dietary protein and insulin". In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-891-9_120.
Texto completo da fonteDiniz, Clebiana Alves e. silva, Poliana Silva de Brito, Tainan de Andrade Rocha, Suzana Maria de Oliveira Costa Meneses e Julia Maria Pacheco Lins Magalhães. "Elderly people with diabetes: an analysis of the factors that are associated with lower limb amputation". In II INTERNATIONAL SEVEN MULTIDISCIPLINARY CONGRESS. Seven Congress, 2023. http://dx.doi.org/10.56238/homeinternationalanais-028.
Texto completo da fonteMougiakakou, Stavroula G., Aikaterini Prountzou, Dimitra Iliopoulou, Konstantina S. Nikita, Andriani Vazeou e Christos S. Bartsocas. "Neural Network based Glucose - Insulin Metabolism Models for Children with Type 1 Diabetes". In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260640.
Texto completo da fonteMougiakakou, Stavroula G., Aikaterini Prountzou, Dimitra Iliopoulou, Konstantina S. Nikita, Andriani Vazeou e Christos S. Bartsocas. "Neural Network based Glucose - Insulin Metabolism Models for Children with Type 1 Diabetes". In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398212.
Texto completo da fonteĐokovic, Radojica, Marko Cincovic, Vladimir Kurćubic, Milun D. Petrovic, Miloš Ži Petrovic, Ljiljana Anđušic e Biljana Anđelic. "HOMEORETSKA REGULACUJA METABOLIČKIH FUNKCIJA KOD KRAVA U PERIPARTALNOM PERIODU". In SAVETOVANJE o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.235dj.
Texto completo da fonteRelatórios de organizações sobre o assunto "Insulin metabolism"
Gao, Hui, Chen Gong, Shi-chun Shen, Jia-ying Zhao, Dou-dou Xu, Fang-biao Tao, Yang Wang e Xiao-chen Fan. A systematic review on the associations between prenatal phthalate exposure and childhood glycolipid metabolism and blood pressure: evidence from epidemiological studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, junho de 2022. http://dx.doi.org/10.37766/inplasy2022.6.0111.
Texto completo da fonteResearch, Gratis. Brown Fat Activation: A Future Treatment for Obesity & Diabetes. Gratis Research, novembro de 2020. http://dx.doi.org/10.47496/gr.blog.01.
Texto completo da fonteBoisclair, Yves R., e Arieh Gertler. Development and Use of Leptin Receptor Antagonists to Increase Appetite and Adaptive Metabolism in Ruminants. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7697120.bard.
Texto completo da fonteLekhanya, Portia Keabetswe, e Kabelo Mokgalaboni. Exploring the effectiveness of vitamin B12 complex and alpha-lipoic acid as a treatment for diabetic neuropathy. Protocol for systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maio de 2022. http://dx.doi.org/10.37766/inplasy2022.5.0167.
Texto completo da fonteyu, luyou, jinping yang, xi meng e yanhua lin. Effectiveness of the gut microbiota-bile acid pathway (BAS) in the treatment of Type 2 diabetes: A protocol for systematic review and meta analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julho de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0117.
Texto completo da fonteMeidan, Rina, e Robert Milvae. Regulation of Bovine Corpus Luteum Function. United States Department of Agriculture, março de 1995. http://dx.doi.org/10.32747/1995.7604935.bard.
Texto completo da fonteMcGuire, Mark A., Amichai Arieli, Israel Bruckental e Dale E. Bauman. Increasing Mammary Protein Synthesis through Endocrine and Nutritional Signals. United States Department of Agriculture, janeiro de 2001. http://dx.doi.org/10.32747/2001.7574338.bard.
Texto completo da fonteButler, Walter R., Uzi Moallem, Amichai Arieli, Robert O. Gilbert e David Sklan. Peripartum dietary supplementation to enhance fertility in high yielding dairy cows. United States Department of Agriculture, abril de 2007. http://dx.doi.org/10.32747/2007.7587723.bard.
Texto completo da fonte