Literatura científica selecionada sobre o tema "Insulating-To-Metal transition"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Insulating-To-Metal transition".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Insulating-To-Metal transition"
CHEN, DONG-MENG, e LIANG-JIAN ZOU. "ORBITAL INSULATORS AND ORBITAL ORDER–DISORDER INDUCED METAL–INSULATOR TRANSITION IN TRANSITION-METAL OXIDES". International Journal of Modern Physics B 21, n.º 05 (20 de fevereiro de 2007): 691–706. http://dx.doi.org/10.1142/s0217979207036618.
Texto completo da fontePustogow, A., A. S. McLeod, Y. Saito, D. N. Basov e M. Dressel. "Internal strain tunes electronic correlations on the nanoscale". Science Advances 4, n.º 12 (dezembro de 2018): eaau9123. http://dx.doi.org/10.1126/sciadv.aau9123.
Texto completo da fonteASOKAMANI, R., CH U. M. TRINADH, G. PARI e S. NATARAJAN. "INSULATOR-TO-METAL TRANSITION IN LaRhO3 UNDER HIGH PRESSURE". Modern Physics Letters B 09, n.º 11n12 (20 de maio de 1995): 701–9. http://dx.doi.org/10.1142/s0217984995000644.
Texto completo da fonteDriscoll, D. C., M. Hanson, C. Kadow e A. C. Gossard. "Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, n.º 4 (2001): 1631. http://dx.doi.org/10.1116/1.1388211.
Texto completo da fonteLiang, Yongcheng, Ping Qin, Zhiyong Liang, Lizhen Zhang, Xun Yuan e Yubo Zhang. "Identification of a monoclinic metallic state in VO2 from a modified first-principles approach". Modern Physics Letters B 33, n.º 12 (30 de abril de 2019): 1950148. http://dx.doi.org/10.1142/s0217984919501483.
Texto completo da fonteAllain, Adrien, Zheng Han e Vincent Bouchiat. "Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids". Nature Materials 11, n.º 7 (20 de maio de 2012): 590–94. http://dx.doi.org/10.1038/nmat3335.
Texto completo da fonteLee, Seung-Yong, Hyuneui Lim, Gyoung-Rin Choi, Jan-Di Kim, Eun-Kyung Suh e Sang-Kwon Lee. "Metal-to-Insulating Transition of Single Polyaniline (PANI) Nanowire: A Dedoping Effect". Journal of Physical Chemistry C 114, n.º 27 (22 de junho de 2010): 11936–39. http://dx.doi.org/10.1021/jp101424b.
Texto completo da fonteMorrow, Ryan, e Patrick Woodward. "Competing Superexchange Interactions in Double Perovskite Osmates". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C1366. http://dx.doi.org/10.1107/s2053273314086331.
Texto completo da fonteCohen, Oded, e Zvi Ovadyahu. "1/f NOISE NEAR THE METAL-INSULATOR TRANSITION". International Journal of Modern Physics B 08, n.º 07 (30 de março de 1994): 897–903. http://dx.doi.org/10.1142/s0217979294000440.
Texto completo da fonteJager, Marieke F., Christian Ott, Peter M. Kraus, Christopher J. Kaplan, Winston Pouse, Robert E. Marvel, Richard F. Haglund, Daniel M. Neumark e Stephen R. Leone. "Tracking the insulator-to-metal phase transition in VO2with few-femtosecond extreme UV transient absorption spectroscopy". Proceedings of the National Academy of Sciences 114, n.º 36 (21 de agosto de 2017): 9558–63. http://dx.doi.org/10.1073/pnas.1707602114.
Texto completo da fonteTeses / dissertações sobre o assunto "Insulating-To-Metal transition"
Tothill, J. N. "An investigation into the magnetic properties of certain Mott insulating transition metal compounds close to delocalization". Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376619.
Texto completo da fonteAlzate, Banguero Melissa. "Towards neuromorphic computing on quantum many-body architectures : VO2 transition dynamics". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS021.
Texto completo da fonteAs AI demands grow, new computing paradigms are essential. Traditional von Neumann architectures struggle with intensive AI requirements. Neuromorphic computing, inspired by the brain, integrates processing and memory for faster, efficient computation, ideal for AI applications like deep learning and pattern recognition.Key materials for neuromorphic computing include synaptors and neuristors. Memristors, non-volatile memories made from oxides like HfO2 and TiO2, mimic synaptic behavior by switching states via nanoscale filaments or phase transitions. Neuristors emulate neuron spiking behavior using memristors and resistance-capacitance circuits to replicate the Leaky, Integrate, and Fire model. Mott insulators like VO2 mimic neuron-like behavior by forming volatile conductive pathways. However, synaptors and neuristors often require different materials. Optimizing VO2 for synaptic behavior could enable it to serve both functions at room temperature.Studying phase-separated systems like VO2 is complex due to inhomogeneities. Advances in infrared and optical microscopy now allow imaging these regions with nanometer-scale resolution. Near-field techniques, using atomic force microscopes coupled to IR lasers, can probe local conductivity at the nanoscale. However, these probes have limitations: (i) long scans for larger inhomogeneities and (ii) temperature-driven phase transitions causing temperature drifts and difficult imaging comparisons.To address these, we developed a far-field optical microscopy setup to study VO2 phase transitions. This setup leverages optical contrast between insulating and metallic phases, observable from nanometers to microns. We applied different temperature protocols while continuously imaging, counteracting temperature drift and aligning sharp images. This enables single-pixel time traces to indicate specific phase transition temperatures.We first mapped critical temperature (Tc), transition width (ΔTc), and transition sharpness (δTc) in VO2. These maps could enable tailoring VO2 properties for specific applications like memory devices and fast switching components.We also presented the first optical imaging of ramp reversal memory (RRM) in VO2, showing cluster evolution during thermal subloop training. Memory accumulation occurs at cluster boundaries and within patches, suggesting preferential diffusion of point defects. This could enhance memory effects through defect engineering, improving memory devices' robustness and stability.Additionally, we pursued a machine learning (ML) analysis of fractal patterns in VO2, using ML to classify the Hamiltonian driving pattern formation. Our convolutional neural network (CNN) achieved high accuracy with synthetic and experimental data, confirming pattern formation driven by proximity to a critical point of the two-dimensional random field Ising model. This framework, combined with symmetry reduction and confidence quantification, offers a new powerful tool for analyzing complex phase transitions in correlated materials.Our research provides a new optical characterization method for understanding VO2 transition dynamics and introduces innovative approaches for optimizing VO2 for non-memory applications. These insights lay a foundation for future studies that explore RRM's potential, and extend ML frameworks to other correlated materials
Capítulos de livros sobre o assunto "Insulating-To-Metal transition"
Cao, Gang, e Lance E. DeLong. "Introduction". In Physics of Spin-Orbit-Coupled Oxides, 3–30. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.003.0001.
Texto completo da fonteKamimura, Hiroshi, e Hideo Aoki. "Electron-Electron Interactions In Impurity Bands". In Physics of Interacting Electrons in Disordered Systems, 43–75. Oxford University PressOxford, 1990. http://dx.doi.org/10.1093/oso/9780198520238.003.0004.
Texto completo da fonteKrishnaprasad, Adithi, e Tania Roy. "Memory Devices and Artificial Synapses with 2D Materials". In Advanced Memory Technology, 373–408. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169946-00373.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Insulating-To-Metal transition"
Tadokoro, Yuzuru, Keisuke Takano e Masanori Hangyo. "Transition from insulating to conducting states induced by intense terahertz pulses in aggregate of metal particles". In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956363.
Texto completo da fonteChervinskii, Semyon, Ibrahim Issah, Markus Lahikainen, Alireza R. Rashed, Kim Kuntze, Arri Priimagi e Humeyra Caglayan. "Humidity- and Temperature- Stimuli-Responsive Tunable Metal-Hydrogel-Metal Reflective Filter". In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fth5b.6.
Texto completo da fonteChang, Ruxia, Desong Fan e Qiang Li. "Research on Thermal Properties of Insulator-Metal Transition at Room Temperature in Sm1-xCaxMnO3". In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3963.
Texto completo da fonteChain, Elizabeth E. "Optical properties of vanadium oxide films". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.ms2.
Texto completo da fonte