Siga este link para ver outros tipos de publicações sobre o tema: Instability mechanisms.

Artigos de revistas sobre o tema "Instability mechanisms"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Instability mechanisms".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Baird, D. M. "Mechanisms of telomeric instability." Cytogenetic and Genome Research 122, no. 3-4 (2008): 308–14. http://dx.doi.org/10.1159/000167817.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Thompson, Sarah L., Samuel F. Bakhoum, and Duane A. Compton. "Mechanisms of Chromosomal Instability." Current Biology 20, no. 6 (2010): R285—R295. http://dx.doi.org/10.1016/j.cub.2010.01.034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

He Bai and M. Arcak. "Instability Mechanisms in Cooperative Control." IEEE Transactions on Automatic Control 55, no. 1 (2010): 258–63. http://dx.doi.org/10.1109/tac.2009.2036301.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sharma, G., R. V. Ramanujan, and G. P. Tiwari. "Instability mechanisms in lamellar microstructures." Acta Materialia 48, no. 4 (2000): 875–89. http://dx.doi.org/10.1016/s1359-6454(99)00378-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Venkatesan, Shriram, Adayapalam T. Natarajan, and M. Prakash Hande. "Chromosomal instability—mechanisms and consequences." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 793 (November 2015): 176–84. http://dx.doi.org/10.1016/j.mrgentox.2015.08.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Gollin, Susanne M. "Mechanisms leading to chromosomal instability." Seminars in Cancer Biology 15, no. 1 (2005): 33–42. http://dx.doi.org/10.1016/j.semcancer.2004.09.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Shah, Prediman K. "Molecular mechanisms of plaque instability." Current Opinion in Lipidology 18, no. 5 (2007): 492–99. http://dx.doi.org/10.1097/mol.0b013e3282efa326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sirignano, William A. "Driving Mechanisms for Combustion Instability." Combustion Science and Technology 187, no. 1-2 (2014): 162–205. http://dx.doi.org/10.1080/00102202.2014.973801.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gallaire, F., and J. M. Chomaz. "Instability mechanisms in swirling flows." Physics of Fluids 15, no. 9 (2003): 2622–39. http://dx.doi.org/10.1063/1.1589011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Huang, Jinhua, Jinping Liang, Lijia Huang, and Tingting Li. "Mechanisms of Atherosclerotic Plaque Instability." International Journal of Biology and Life Sciences 5, no. 1 (2024): 9–12. http://dx.doi.org/10.54097/83r6jq74.

Texto completo da fonte
Resumo:
Cardiovascular disease (CVD) is the leading cause of mortality in humans worldwide. The main cause of CVD is the formation of thrombi due to by unstable atherosclerotic plaque rupture on the arterial wall. Long-term accumulation of thrombi results in vascular remodeling, and subsequent-stenosis of the lumen obstructs the blood flow, thereby leading to myocardial tissue ischemia and hypoxia. Sustained ischemia and hypoxia lead to myocyte necrosis, resulting in irreversible myocardial injury. Many molecular and cellular mechanisms are associated with atherosclerotic plaque instability (API). For
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Hadadi, Mohammad, Ismaeil Ebrahimi, Mohammad Ebrahim Mousavi, Gholamreza Aminian, Ali Esteki, and Mehdi Rahgozar. "The effect of combined mechanism ankle support on postural control of patients with chronic ankle instability." Prosthetics and Orthotics International 41, no. 1 (2016): 58–64. http://dx.doi.org/10.1177/0309364615596068.

Texto completo da fonte
Resumo:
Background:Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients.Objectives:The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients.Study design:Cross-sectional study.Methods:An ankle support with combined mechanism was designed based on most effective
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Eyler, Daniel E., Kylie A. Burnham, Thomas E. Wilson, and Patrick J. O’Brien. "Mechanisms of glycosylase induced genomic instability." PLOS ONE 12, no. 3 (2017): e0174041. http://dx.doi.org/10.1371/journal.pone.0174041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Pearson, Christopher E., Kerrie Nichol Edamura, and John D. Cleary. "Repeat instability: mechanisms of dynamic mutations." Nature Reviews Genetics 6, no. 10 (2005): 729–42. http://dx.doi.org/10.1038/nrg1689.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Kim, Seoyoung, Shaun E. Peterson, Maria Jasin, and Scott Keeney. "Mechanisms of germ line genome instability." Seminars in Cell & Developmental Biology 54 (June 2016): 177–87. http://dx.doi.org/10.1016/j.semcdb.2016.02.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Filipič, Metka. "Mechanisms of cadmium induced genomic instability." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 733, no. 1-2 (2012): 69–77. http://dx.doi.org/10.1016/j.mrfmmm.2011.09.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Jefford, Charles Edward, and Irmgard Irminger-Finger. "Mechanisms of chromosome instability in cancers." Critical Reviews in Oncology/Hematology 59, no. 1 (2006): 1–14. http://dx.doi.org/10.1016/j.critrevonc.2006.02.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bayly, B. J., S. A. Orszag, and T. Herbert. "Instability Mechanisms in Shear-Flow Transition." Annual Review of Fluid Mechanics 20, no. 1 (1988): 359–91. http://dx.doi.org/10.1146/annurev.fl.20.010188.002043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Libby, Peter. "Mechanisms Underlying Instability of Atherosclerotic Plaques." Journal of Vascular and Interventional Radiology 7, no. 1 (1996): 26–27. http://dx.doi.org/10.1016/s1051-0443(96)70018-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Glover, Thomas W., Martin F. Arlt, Anne M. Casper, and Sandra G. Durkin. "Mechanisms of common fragile site instability." Human Molecular Genetics 14, suppl_2 (2005): R197—R205. http://dx.doi.org/10.1093/hmg/ddi265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dreher, T. M., and G. W. Stevens. "Instability Mechanisms of Supported Liquid Membranes." Separation Science and Technology 33, no. 6 (1998): 835–53. http://dx.doi.org/10.1080/01496399808544879.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Graziano, Simona, and Susana Gonzalo. "Mechanisms of oncogene-induced genomic instability." Biophysical Chemistry 225 (June 2017): 49–57. http://dx.doi.org/10.1016/j.bpc.2016.11.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kaufmann, William K., Craig C. Carson, Bernard Omolo, et al. "Mechanisms of chromosomal instability in melanoma." Environmental and Molecular Mutagenesis 55, no. 6 (2014): 457–71. http://dx.doi.org/10.1002/em.21859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

JIANG, HAN, MING-WEN CHEN, and ZI-DONG WANG. "EFFECT OF ANISOTROPIC SURFACE TENSION ON THE MORPHOLOGICAL STABILITY OF DEEP CELLULAR CRYSTAL GROWTH IN DIRECTIONAL SOLIDIFICATION." Surface Review and Letters 26, no. 06 (2019): 1850210. http://dx.doi.org/10.1142/s0218625x18502104.

Texto completo da fonte
Resumo:
This paper studies the effect of anisotropic surface tension on the morphological stability of deep cellular crystal in directional solidification by using the matched asymptotic expansion method and multiple variable expansion method. We find that the morphological stability of deep cellular crystal growth with anisotropic surface tension shows the same mechanism as that with isotropic surface tension. The deep cellular crystal growth contains two types of global instability mechanisms: the global oscillatory instability, whose neutral modes yield strong oscillatory dendritic structures, and
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cox, John P. "Theory of Cepheid Pulsation: Excitation Mechanisms." International Astronomical Union Colloquium 82 (1985): 126–46. http://dx.doi.org/10.1017/s0252921100109248.

Texto completo da fonte
Resumo:
AbstractThe various excitation mechanisms (eight in all) that have been proposed to account for the vibrational instability of variable stars, are surveyed. The most widely applied one is perhaps the “envelope ionization mechanism.” This can account for most of the essential characteristics of the “instability strip.” A simple explanation of the period-luminosity relation of classical Cepheids is given. A few outstanding problems in pulsation theory are also listed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Pavalavanni, Pradeep Kumar, Min-Seon Jo, Jae-Eun Kim, and Jeong-Yeol Choi. "Numerical Study of Unstable Shock-Induced Combustion with Different Chemical Kinetics and Investigation of the Instability Using Modal Decomposition Technique." Aerospace 10, no. 3 (2023): 292. http://dx.doi.org/10.3390/aerospace10030292.

Texto completo da fonte
Resumo:
An unstable shock-induced combustion (SIC) case around a hemispherical projectile has been numerically studied which experimentally produced a regular oscillation. Comparison of detailed H2/O2 reaction mechanisms is made for the numerical simulation of SIC with higher-order numerical schemes intended for the use of the code for the hypersonic propulsion and supersonic combustion applications. The simulations show that specific reaction mechanisms are grid-sensitive and produce spurious reactions in the high-temperature region, which trigger artificial instability in the oscillating flow field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Bernier, D., F. Lacas, and S. Candel. "Instability Mechanisms in a Premixed Prevaporized Combustor." Journal of Propulsion and Power 20, no. 4 (2004): 648–56. http://dx.doi.org/10.2514/1.11461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Wright, E. G. "Radiation-induced genomic instability: manifestations and mechanisms." International Journal of Low Radiation 1, no. 2 (2004): 231. http://dx.doi.org/10.1504/ijlr.2004.003875.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Smith, Marc K. "Instability mechanisms in dynamic thermocapillary liquid layers." Physics of Fluids 29, no. 10 (1986): 3182. http://dx.doi.org/10.1063/1.865836.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wanschura, M., V. M. Shevtsova, H. C. Kuhlmann, and H. J. Rath. "Convective instability mechanisms in thermocapillary liquid bridges." Physics of Fluids 7, no. 5 (1995): 912–25. http://dx.doi.org/10.1063/1.868567.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Shtern, Vladimir. "Mechanisms of jet instability: role of deceleration." Fluid Dynamics Research 50, no. 5 (2018): 051408. http://dx.doi.org/10.1088/1873-7005/aab0fc.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Jotkar, Mamta, José Miguel Pérez, Vassilis Theofilis, and Rama Govindarajan. "Instability Mechanisms in Straight-Diverging-Straight Channels." Procedia IUTAM 14 (2015): 236–45. http://dx.doi.org/10.1016/j.piutam.2015.03.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Bichara, M., J. Wagner, and I. B. Lambert. "Mechanisms of tandem repeat instability in bacteria." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 598, no. 1-2 (2006): 144–63. http://dx.doi.org/10.1016/j.mrfmmm.2006.01.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Duijf, Pascal H. G., Devathri Nanayakkara, Katia Nones, Sriganesh Srihari, Murugan Kalimutho, and Kum Kum Khanna. "Mechanisms of Genomic Instability in Breast Cancer." Trends in Molecular Medicine 25, no. 7 (2019): 595–611. http://dx.doi.org/10.1016/j.molmed.2019.04.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

KOMAROVA, NATALIA L., and SUZANNE J. M. H. HULSCHER. "Linear instability mechanisms for sand wave formation." Journal of Fluid Mechanics 413 (June 25, 2000): 219–46. http://dx.doi.org/10.1017/s0022112000008429.

Texto completo da fonte
Resumo:
A height- and flow-dependent model for turbulent viscosity is employed to explain the generation of sand waves in tidal seas. This new model resolves the problem of excitation of very long waves in sand wave formation, because it leads to damping of the long waves and gives a finite separation between the most excited mode and the zero mode. For parameters within their physically realistic ranges, a linear analysis of the resulting system yields a first excited mode whose wavelength is similar to the characteristic wavelength of sand waves observed in nature. The physical mechanism of sand wav
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Luongo, A., and G. Piccardo. "Linear instability mechanisms for coupled translational galloping." Journal of Sound and Vibration 288, no. 4-5 (2005): 1027–47. http://dx.doi.org/10.1016/j.jsv.2005.01.056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Riyopoulos, Spilios. "Instability mechanisms in storage-ring FEL oscillators." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 296, no. 1-3 (1990): 485–98. http://dx.doi.org/10.1016/0168-9002(90)91255-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

de Cárcer, Guillermo, Pablo Huertas, and Andres J. López-Contreras. "Chromosome instability: From molecular mechanisms to disease." DNA Repair 66-67 (June 2018): 72–75. http://dx.doi.org/10.1016/j.dnarep.2018.04.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Tsetseris, L., X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides. "Physical mechanisms of negative-bias temperature instability." Applied Physics Letters 86, no. 14 (2005): 142103. http://dx.doi.org/10.1063/1.1897075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hasson, Alam S., and Rhon E. Manor. "Steady-state instability in tropospheric chemical mechanisms." Atmospheric Environment 37, no. 34 (2003): 4735–45. http://dx.doi.org/10.1016/j.atmosenv.2003.08.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Debatisse, Michelle, Benoît Le Tallec, Anne Letessier, Bernard Dutrillaux, and Olivier Brison. "Common fragile sites: mechanisms of instability revisited." Trends in Genetics 28, no. 1 (2012): 22–32. http://dx.doi.org/10.1016/j.tig.2011.10.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zheng, S. J., J. Wang, J. S. Carpenter, et al. "Plastic instability mechanisms in bimetallic nanolayered composites." Acta Materialia 79 (October 2014): 282–91. http://dx.doi.org/10.1016/j.actamat.2014.07.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Schoisswohl, U., and H. C. Kuhlmann. "Instability mechanisms in buoyant-thermocapillary liquid pools." PAMM 7, no. 1 (2007): 4100031–32. http://dx.doi.org/10.1002/pamm.200700696.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Beale, David, and Shyr Wen Lee. "Nonlinear equation instability boundaries in flexible mechanisms." Mechanism and Machine Theory 31, no. 2 (1996): 215–27. http://dx.doi.org/10.1016/0094-114x(95)00063-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Blalock, Darryl, Andrew Miller, Michael Tilley, and Jinxi Wang. "Joint Instability and Osteoarthritis." Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders 8 (January 2015): CMAMD.S22147. http://dx.doi.org/10.4137/cmamd.s22147.

Texto completo da fonte
Resumo:
Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Hackett, Jennifer A., and Carol W. Greider. "End Resection Initiates Genomic Instability in the Absence of Telomerase." Molecular and Cellular Biology 23, no. 23 (2003): 8450–61. http://dx.doi.org/10.1128/mcb.23.23.8450-8461.2003.

Texto completo da fonte
Resumo:
ABSTRACT Telomere dysfunction causes genomic instability. However, the mechanism that initiates this instability when telomeres become short is unclear. We measured the mutation rate and loss of heterozygosity along a chromosome arm in diploid yeast that lacked telomerase to distinguish between mechanisms for the initiation of instability. Sequence loss was localized near chromosome ends in the absence of telomerase but not after breakage of a dicentric chromosome. In the absence of telomerase, the increase in mutation rate is dependent on the exonuclease Exo1p. Thus, exonucleolytic end resect
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Appenzeller, I. "Instability in Massive Stars: An Overview." Symposium - International Astronomical Union 116 (1986): 139–49. http://dx.doi.org/10.1017/s0074180900148831.

Texto completo da fonte
Resumo:
Dynamical, vibrational, and thermal instabilities of massive blue stars are discussed as possible mechanisms for the observed brightness variations of such objects. Relaxation oscillations (on local thermal time scales) due to dynamical instabilities of the stellar wind flows appear to be the most likely mechanism, at least for the S Dor variables. Very massive main-sequence stars with M > 103 M⊙ should be violently vibrationally unstable and therefore should differ significantly from stable main-sequence stars of lower mass.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Lam, Michael-Angelo Y. H., Linda J. Cummings, and Lou Kondic. "Stability of thin fluid films characterised by a complex form of effective disjoining pressure." Journal of Fluid Mechanics 841 (March 1, 2018): 925–61. http://dx.doi.org/10.1017/jfm.2017.919.

Texto completo da fonte
Resumo:
We discuss instabilities of fluid films of nanoscale thickness, with a particular focus on films where the destabilising mechanism allows for linear instability, metastability, and absolute stability, depending on the mean film thickness. Our study is motivated by nematic liquid crystal films; however, we note that similar instability mechanisms, and forms of the effective disjoining pressure, appear in other contexts, such as the well-studied problem of polymeric films on two-layered substrates. The analysis is carried out within the framework of the long-wave approximation, which leads to a
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Cuceu, Corina, Bruno Colicchio, Eric Jeandidier, et al. "Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability." Cancers 10, no. 7 (2018): 233. http://dx.doi.org/10.3390/cancers10070233.

Texto completo da fonte
Resumo:
Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Embacher, Martin, and H. F. Fasel. "Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence." Journal of Fluid Mechanics 747 (April 14, 2014): 141–85. http://dx.doi.org/10.1017/jfm.2014.123.

Texto completo da fonte
Resumo:
AbstractLaminar separation bubbles generated on a flat plate by an adverse pressure gradient are investigated using direct numerical simulations (DNSs). Two-dimensional periodic forcing is applied at a blowing/suction slot upstream of separation. Control of separation through forcing with various frequencies and amplitudes is examined. For the investigation of absolute instability mechanisms, baseflows provided by two-dimensional Navier–Stokes calculations are analysed by introducing pulse disturbances and computing the three-dimensional flow response using DNS. The primary instability of the
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Czechowski, L., and J. M. Floryan. "Marangoni Instability in a Finite Container-Transition Between Short and Long Wavelengths Modes." Journal of Heat Transfer 123, no. 1 (2000): 96–104. http://dx.doi.org/10.1115/1.1339005.

Texto completo da fonte
Resumo:
Marangoni instability in a finite container with a deformable interface in the absence of gravity has been investigated. It is shown that the critical Marangoni number Macr is a non-monotonic function of the length of the container. Two different physical mechanisms driving convection are indicated. The advection of heat is essential for the first, advective (“classical”) mechanism that gives rise to short wavelength modes. The interface deformation is essential for the second mechanism that gives rise to long wavelength modes. If the container is sufficiently long, the second mechanism leads
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!