Literatura científica selecionada sobre o tema "Insect vectors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Insect vectors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Insect vectors"
Katili, Moh Zulkifli, Yeni Herdiyeni e Medria Kusuma Dewi Hardhienata. "Leveraging Biotic Interaction Knowledge Graph and Network Analysis to Uncover Insect Vectors of Plant Virus". Journal of Information Systems Engineering and Business Intelligence 10, n.º 1 (28 de fevereiro de 2024): 94–109. http://dx.doi.org/10.20473/jisebi.10.1.94-109.
Texto completo da fonteNie, Danyue, Jiaqiao Li, Qinghua Xie, Lele Ai, Changqiang Zhu, Yifan Wu, Qiyuan Gui, Lingling Zhang e Weilong Tan. "Nanoparticles: A Potential and Effective Method to Control Insect-Borne Diseases". Bioinorganic Chemistry and Applications 2023 (11 de maio de 2023): 1–13. http://dx.doi.org/10.1155/2023/5898160.
Texto completo da fonteChen, Qian, e Taiyun Wei. "Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts". Molecular Plant-Microbe Interactions® 33, n.º 1 (janeiro de 2020): 18–25. http://dx.doi.org/10.1094/mpmi-07-19-0184-cr.
Texto completo da fonteBerasategui, Aileen, Shounak Jagdale e Hassan Salem. "Fusarium phytopathogens as insect mutualists". PLOS Pathogens 19, n.º 7 (27 de julho de 2023): e1011497. http://dx.doi.org/10.1371/journal.ppat.1011497.
Texto completo da fonteZhao, Wan, Jinting Yu, Feng Jiang, Wei Wang, Le Kang e Feng Cui. "Coordination between terminal variation of the viral genome and insect microRNAs regulates rice stripe virus replication in insect vectors". PLOS Pathogens 17, n.º 3 (10 de março de 2021): e1009424. http://dx.doi.org/10.1371/journal.ppat.1009424.
Texto completo da fonteLabroussaa, Fabien, Adam R. Zeilinger e Rodrigo P. P. Almeida. "Blocking the Transmission of a Noncirculative Vector-Borne Plant Pathogenic Bacterium". Molecular Plant-Microbe Interactions® 29, n.º 7 (julho de 2016): 535–44. http://dx.doi.org/10.1094/mpmi-02-16-0032-r.
Texto completo da fonteWu, Xiujuan, e Jian Ye. "Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors". Viruses 12, n.º 2 (27 de janeiro de 2020): 148. http://dx.doi.org/10.3390/v12020148.
Texto completo da fonteKaur, Navneet, Daniel K. Hasegawa, Kai-Shu Ling e William M. Wintermantel. "Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control". Phytopathology® 106, n.º 10 (outubro de 2016): 1213–22. http://dx.doi.org/10.1094/phyto-02-16-0111-fi.
Texto completo da fonteZhao, Pingzhi, Xiangmei Yao, Congxi Cai, Ran Li, Jie Du, Yanwei Sun, Mengyu Wang et al. "Viruses mobilize plant immunity to deter nonvector insect herbivores". Science Advances 5, n.º 8 (agosto de 2019): eaav9801. http://dx.doi.org/10.1126/sciadv.aav9801.
Texto completo da fonteZongoma, A. M., D. B. Dangora, M. Sétamou, M. D. Alegbejo e O. J. Alabi. "Identification of mealybugs, soft scale insects and their predators in vineyards across the savannah agro-ecological region of Nigeria". Zoologist (The) 18, n.º 1 (8 de abril de 2021): 27–32. http://dx.doi.org/10.4314/tzool.v18i1.5.
Texto completo da fonteTeses / dissertações sobre o assunto "Insect vectors"
Ivanauskas, Algirdas, e ALGIRDAS IVANAUSKAS. "Phytoplasmas and their insect vectors in Lithuania". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140620_091456-96241.
Texto completo da fonteDisertacijos darbo tikslas – aptikti ir identifikuoti Lietuvoje paplitusias fitoplazmas vabzdžiuose, surinktuose nuo įvairių augalų su fitoplazminiais simptomais ir nustatyti fitoplazmų vabzdžius pernešėjus bei atskleisti identifikuotų ir kitų fitoplazmų filogenetinius giminingumus. Lietuvoje jau žinomos keletas labiausiai paplitusių fitoplazmų grupių bei pogrupių, taip pat aptikta nemažai jų augalų-šeimininkų. Duomenų apie galimus šių bakterijų pernešėjus Lietuvoje beveik nėra. Pernešėjų identifikavimas ir tyrimas padės kurti veiksmingesnes strategijas bei sistemas kovai su fitoplazminėmis infekcijomis. Fitoplazmų ir jų pernešėjų identifikavimas suteiks svarbių duomenų tiriant šių patogenų ekologiją, paplitimą, kilmę, epidemiologiją, plitimo kelius. Informacija bus naudinga Lietuvos ir kaimyninių šalių augalų apsaugai. Taip pat galės padėti nustatant galimų invazinių vabzdžių rūšių bei fitoplazmų kamienų atsiradimą Lietuvoje dėl klimato kaitos. Šio darbo metu pirmą kartą Lietuvoje molekuliniais metodais buvo išaiškinti fitoplazmų vabzdžiai pernešėjai. Daugelis aptiktų fitoplazmų pogrupių nustatytos identifikotuose vabzdžiuose pirmą kartą, kaip Lietuvoje taip ir pasaulyje. Penkiose augalų rūšyse fitoplazmos aptiktos pirmą kartą Lietuvoje. Darbo metu nustatytas vienas visiškai naujas Lietuvai ir pasauliui ir vienas naujas Lietuvai fitoplazmų pogrupiai bei jų augalai šeimininkai, kas prisideda prie Lietuvoje bei pasaulyje aptinkamų fitoplazmų paplitimo ir bioįvairovės tyrimo... [toliau žr. visą tekstą]
Theodorides, Kosmas. "Genetic and systematic studies on Cicadellidae vectors". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368187.
Texto completo da fontePenaud, Magalie. "Characterization of rAAV vectors packaging in baculovirusinfected insect cells". Thesis, Nantes, 2018. http://www.theses.fr/2018NANT1003.
Texto completo da fonteDue to their efficiency and safety, recombinant adenoassociated virus (rAAV) vectors have been widely used for gene therapy. ln the past few years, there have been a large number of positive clinical outputs using AAVbased products spanning broad therapeutic areas. However, the generation of rAAV at sufficient quantity and quality appears as a bottleneck on the path to commercialization. The baculovirus-infected insect cell platform has proven to tackle this challenge, yet, surprisingly, the biology of rAAV in insect cells remains largely unknown. As a result, current vectors suffer from quality problems such as generation of empty particles or reduced infectivity. The objectives of the present work are 1) to determine the rAAV packaging efficiency and specificity in insect cells 2) to investigate the link between packaging and Rep proteins expression, and 3) to decipher the role of the assembly-activating protein (AAP). First, we showed that less than 30% of rAAV particles contained the gene of interest in S19 cells cleared lysate. Second, we found that baculoviral DNA contamination is below 2.1% of encapsidated DNA, with a higher representativity for sequences close to the inverted terminal repeats. Finally, we demonstrated that functional AAP is strictly required for rAAV2 particles assembly in insect cells. Altogether, our data provide novel insights into the biological mechanism of rAAV genome packaging in insect cells and suggest that there is still room for improvement in order to increase vector quality. From a safety perspective, this project has allowed the development of an accurate quality control method to assess DNA contamination in viral vector stocks
McCarroll, Lynn. "Characterisation of heterologous gene expression in insect cell lines". Thesis, Oxford Brookes University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389533.
Texto completo da fontePullen, Janice Gaye. "Development of novel baclovirus expression vectors using the 39K gene promoter". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260189.
Texto completo da fonteChapple, Susan Dorothy Jane. "Improving baculovirus expression vectors by modulating the synthesis of essential virus protein". Thesis, Oxford Brookes University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264474.
Texto completo da fonteAtkinson, Alan Edward. "Expression of neuro-transmitter receptors in insect cells using baculovirus vectors". Thesis, Oxford Brookes University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304651.
Texto completo da fonteMOUSSA, ELMAGHAWRY ABDELHAMEED. "SUSTAINABLE INTEGRATED MANAGEMENT OF GRAPEVINE BOIS NOIR AND ITS ASSOCIATED INSECT VECTORS". Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/819771.
Texto completo da fonteWarren, Ann. "Transposable genetic elements in the mosquito Aedes aegypti". Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237672.
Texto completo da fonteNg, Terry Fei Fan. "Discovery of Novel Viruses From Animals, Plants, and Insect Vectors Using Viral Metagenomics". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3506.
Texto completo da fonteLivros sobre o assunto "Insect vectors"
Service, Mike W. Blood-sucking insects, vectors of disease. London: E. Arnold, 1986.
Encontre o texto completo da fonteC, Marquardt William, ed. Biology of disease vectors. 2a ed. Boston: Elsevier Academic Press, 2004.
Encontre o texto completo da fonte1949-, Clark J. Marshall, American Chemical Society. Division of Agrochemicals., American Chemical Society e Nihon Nōyaku Gakkai, eds. Advances in human vector control. Washington, DC: American Chemical Society, 2009.
Encontre o texto completo da fonteCrampton, Julian M., C. Ben Beard e Christos Louis, eds. The Molecular Biology of Insect Disease Vectors. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1535-0.
Texto completo da fonteM, Crampton Julian, Beard C. B. 1957- e Louis C, eds. The molecular biology of insect disease vectors: A methods manual. London: Chapman and Hall, 1997.
Encontre o texto completo da fonteWHO Study Group on Malaria Vector Control and Personal Protection. Malaria vector control and personal protection: Report of a WHO Study Group. Geneva: World Health Organization, 2006.
Encontre o texto completo da fonteOrganization, World Health, ed. Vector control: Methods for use by individuals and communities. Geneva: World Health Organization, 1997.
Encontre o texto completo da fonteVector biology, ecology, and control. Dordrecht: Springer, 2010.
Encontre o texto completo da fonteW, Murhammer David, ed. Baculovirus and insect cell expression protocols. 2a ed. Totowa, N.J: Humana Press, 2007.
Encontre o texto completo da fonteService, M. W. Medical entomology for students. 4a ed. Cambridge: Cambridge University Press, 2008.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Insect vectors"
Govorushko, Sergey. "Insects as Vectors of Plant Diseases". In Human–Insect Interactions, 248–52. Boca Raton, FL : CRC Press, 2017. | “A science publishers book.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315119915-16.
Texto completo da fontePossee, Robert D., e Linda A. King. "Baculovirus Transfer Vectors". In Baculovirus and Insect Cell Expression Protocols, 55–75. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-457-5_3.
Texto completo da fonteWeintraub, Phyllis, e Jürgen Gross. "Capturing Insect Vectors of Phytoplasmas". In Methods in Molecular Biology, 61–72. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-089-2_6.
Texto completo da fonteTedeschi, Rosemarie, e Assunta Bertaccini. "Transovarial Transmission in Insect Vectors". In Phytoplasmas: Plant Pathogenic Bacteria - II, 115–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2832-9_5.
Texto completo da fonteButter, N. S. "Introduction: Historical Background, Pathogens, Symptoms, and Economic Importance". In Insect Vectors and Plant Pathogens, 1–28. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-1.
Texto completo da fonteButter, N. S. "Nematodes". In Insect Vectors and Plant Pathogens, 303–18. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-10.
Texto completo da fonteButter, N. S. "Fungi". In Insect Vectors and Plant Pathogens, 319–30. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-11.
Texto completo da fonteButter, N. S. "Phytotoxemia". In Insect Vectors and Plant Pathogens, 331–45. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-12.
Texto completo da fonteButter, N. S. "Plant Pathogens and Electron Microscope". In Insect Vectors and Plant Pathogens, 346–72. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-13.
Texto completo da fonteButter, N. S. "Pathogen Effects and Ecological Factors". In Insect Vectors and Plant Pathogens, 373–96. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Insect vectors"
Fereres, Alberto. "Behavioral responses of insect vectors of plant disease to climate change". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.92654.
Texto completo da fonteSilva, Diego, e Gustavo Batista. "Signal classification by similarity and feature extraction with application in automatic insect identification". In XXVIII Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2015.10006.
Texto completo da fonteTrebicki, Piotr. "Future climate: Its effects on insect vectors and spread of plant diseases". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112313.
Texto completo da fonteOrlovskis, Zigmunds. "Multitasking: How single bacterial virulence proteins modulate plant development and attract insect vectors". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105638.
Texto completo da fonteGrieve, Bruce, Charles Veys, Jose Dingle, John Colvin e Joachim Nwezeobi. "Portable, in-field, multispectral imaging sensor for real-time detection of insect viral-vectors". In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234206.
Texto completo da fonteCampbell, Lindsay. "Climate change effects on rangewide potential distributions and abundances of insect vectors of disease". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.104997.
Texto completo da fonteHallo, Maria, Danni Brito, Ivan Carrera, Bryan Lema e Miguel Pinto. "Semiautomatic Extraction of Morphological Characters from a Book about Insect Vectors of Chagas Disease". In 2019 IEEE World Conference on Engineering Education (EDUNINE). IEEE, 2019. http://dx.doi.org/10.1109/edunine.2019.8875846.
Texto completo da fonteRoslavtseva, S. A., e K. S. Krivonos. "INORGANIC SUBSTANCES AND THEIR EFFECTS ON INSECTS". In V International Scientific Conference CONCEPTUAL AND APPLIED ASPECTS OF INVERTEBRATE SCIENTIFIC RESEARCH AND BIOLOGICAL EDUCATION. Tomsk State University Press, 2020. http://dx.doi.org/10.17223/978-5-94621-931-0-2020-76.
Texto completo da fonteZamorzaeva, Irina, e Aighiuni Bahşiev. "Lack of stolbur transmission by seeds in some moldavian tomato and pepper varieties". In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.86.
Texto completo da fonteZamorzaeva, Irina, e Aighiuni Bahsiev. "Phytoplasma testing in sweet pepper in Moldova". In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.29.
Texto completo da fonteRelatórios de organizações sobre o assunto "Insect vectors"
Hackett, Kevin, Shlomo Rottem, David L. Williamson e Meir Klein. Spiroplasmas as Biological Control Agents of Insect Pests. United States Department of Agriculture, julho de 1995. http://dx.doi.org/10.32747/1995.7613017.bard.
Texto completo da fonteUllman, Diane E., Benjamin Raccah, John Sherwood, Meir Klein, Yehezkiel Antignus e Abed Gera. Tomato Spotted Wilt Tosporvirus and its Thrips Vectors: Epidemiology, Insect/Virus Interactions and Control. United States Department of Agriculture, novembro de 1999. http://dx.doi.org/10.32747/1999.7573062.bard.
Texto completo da fonteGottlieb, Yuval, e Bradley A. Mullens. Might Bacterial Symbionts Influence Vectorial Capacity of Biting Midges for Ruminant Viruses? United States Department of Agriculture, setembro de 2010. http://dx.doi.org/10.32747/2010.7699837.bard.
Texto completo da fonteGurevitz, Michael, Michael E. Adams e Boaz Shaanan. Structural Elements and Neuropharmacological Features Involved in the Insecticidal Properties of an Alpha Scorpion Neurotoxin: A Multidisciplinary Approach. United States Department of Agriculture, agosto de 1995. http://dx.doi.org/10.32747/1995.7573061.bard.
Texto completo da fonteGottlieb, Yuval, Bradley Mullens e Richard Stouthamer. investigation of the role of bacterial symbionts in regulating the biology and vector competence of Culicoides vectors of animal viruses. United States Department of Agriculture, junho de 2015. http://dx.doi.org/10.32747/2015.7699865.bard.
Texto completo da fonteMorin, S., L. L. Walling, Peter W. Atkinson, J. Li e B. E. Tabashnik. ets for CRISPR/Cas9-mediated gene drive in Bemisia tabaci. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2021. http://dx.doi.org/10.32747/2021.8134170.bard.
Texto completo da fonteAdelberg, Jeff, Halina Skorupska, Bill Rhodes, Yigal Cohen e Rafael Perl-Treves. Interploid Hybridization of Cucumis melo and C. metuliferus. United States Department of Agriculture, dezembro de 1999. http://dx.doi.org/10.32747/1999.7580673.bard.
Texto completo da fonteChejanovsky, Nor, e Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, janeiro de 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Texto completo da fonteGhanim, Murad, Joe Cicero, Judith K. Brown e Henryk Czosnek. Dissection of Whitefly-geminivirus Interactions at the Transcriptomic, Proteomic and Cellular Levels. United States Department of Agriculture, fevereiro de 2010. http://dx.doi.org/10.32747/2010.7592654.bard.
Texto completo da fonteChejanovsky, Nor, e Bruce A. Webb. Potentiation of pest control by insect immunosuppression. United States Department of Agriculture, julho de 2004. http://dx.doi.org/10.32747/2004.7587236.bard.
Texto completo da fonte