Siga este link para ver outros tipos de publicações sobre o tema: Inhomogeneous materials.

Artigos de revistas sobre o tema "Inhomogeneous materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Inhomogeneous materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Grimvall, G., e M. S�derberg. "Transport in macroscopically inhomogeneous materials". International Journal of Thermophysics 7, n.º 1 (janeiro de 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Klemens, P. G. "Thermal conductivity of inhomogeneous materials". International Journal of Thermophysics 10, n.º 6 (novembro de 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Nan, Ce-Wen. "Physics of inhomogeneous inorganic materials". Progress in Materials Science 37, n.º 1 (janeiro de 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko e Nataliia Morkovska. "Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials". Materials Science Forum 1068 (19 de agosto de 2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Texto completo da fonte
Resumo:
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Milton, Graeme W. "Analytic materials". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, n.º 2195 (novembro de 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Texto completo da fonte
Resumo:
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mironov, Vladimir I., Olga A. Lukashuk e Dmitry A. Ogorelkov. "On Durability of Structurally Inhomogeneous Materials". Materials Science Forum 1031 (maio de 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Texto completo da fonte
Resumo:
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dyakonov, O. M. "Briquetting of structurally inhomogeneous porous materials". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, n.º 2 (7 de julho de 2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Texto completo da fonte
Resumo:
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Alshits, V. I., e H. O. K. Kirchner. "Cylindrically anisotropic, radially inhomogeneous elastic materials". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, n.º 2007 (8 de março de 2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhou, Q., Z. Bian e A. Shakouri. "Pulsed cooling of inhomogeneous thermoelectric materials". Journal of Physics D: Applied Physics 40, n.º 14 (29 de junho de 2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO e Yoshinobu TANIGAWA. "OS0121 Plate Theories of inhomogeneous materials". Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Zhu, S. B., J. Lee e G. W. Robinson. "Kinetic energy imbalance in inhomogeneous materials". Chemical Physics Letters 161, n.º 3 (setembro de 1989): 249–52. http://dx.doi.org/10.1016/s0009-2614(89)87069-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hoff, Heinrich. "Asymmetrical heat conduction in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 131, n.º 2 (junho de 1985): 449–64. http://dx.doi.org/10.1016/0378-4371(85)90008-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Kayuk, Ya F., e M. K. Shekera. "Reduced mechanical characteristics of inhomogeneous materials". Soviet Applied Mechanics 27, n.º 5 (maio de 1991): 501–7. http://dx.doi.org/10.1007/bf00887776.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Khmelevskaya, V. S., e V. G. Malynkin. "Radiation-induced inhomogeneous state of materials". Metal Science and Heat Treatment 42, n.º 8 (agosto de 2000): 331–34. http://dx.doi.org/10.1007/bf02471310.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Kumar, Kuldeep, e Rajesh Kumar. "On Inhomogeneous Deformations in ES Materials". International Journal of Engineering Science 48, n.º 4 (abril de 2010): 405–16. http://dx.doi.org/10.1016/j.ijengsci.2009.10.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Kharevych, Lily, Patrick Mullen, Houman Owhadi e Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials". ACM Transactions on Graphics 28, n.º 3 (27 de julho de 2009): 1–8. http://dx.doi.org/10.1145/1531326.1531357.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Svenson, O. M. "Nondestructive testing of highly inhomogeneous materials". Materials Science 32, n.º 4 (julho de 1996): 491–504. http://dx.doi.org/10.1007/bf02538978.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Axell, Jörgen, Johan Helsing e Göran Grimvall. "Joule heat distribution in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 157, n.º 1 (maio de 1989): 618. http://dx.doi.org/10.1016/0378-4371(89)90371-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Brice, David K. "Ion implantation distributions in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 17, n.º 4 (novembro de 1986): 289–99. http://dx.doi.org/10.1016/0168-583x(86)90114-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Gondzik, J., e H. Stachowiak. "Positron lifetime in inhomogeneous metallic materials". Crystal Research and Technology 22, n.º 12 (dezembro de 1987): 1511–14. http://dx.doi.org/10.1002/crat.2170221216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Erokhin, Sergey, e Victor Levin. "Inhomogeneous creep equation for viscoelastic materials". E3S Web of Conferences 410 (2023): 03002. http://dx.doi.org/10.1051/e3sconf/202341003002.

Texto completo da fonte
Resumo:
The paper consider an inhomogeneous creep equation arising from a generalized Voigt model containing a Riemann-Liouville fractional derivative of the order 0 < β < 1. The Laplace transform is used for the numerical solution. The obtained solutions are compared with experimental data of polymer concrete samples. On the basis of this comparison the conclusion about the adequacy of the numerical solution method is made, and estimates of the model parameters are given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Tao, Xiang Hua, Jing Qing Huang e Ying Chun Cai. "Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm". Applied Mechanics and Materials 438-439 (outubro de 2013): 430–35. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.430.

Texto completo da fonte
Resumo:
The key of ground penetrating radars application lies in the calculation of dielectric coefficient. The pavement materials are inhomogeneous medium in fact, the particle surface can induce the scatter and diffraction of electromagnetic wave. The inhomogeneous dielectricity can change the characteristics of reflected wave. It may even cause background noise of reflected signal, which will lead to mistakes in signal interpretation. Therefore it is necessary to analyze the inhomogeneous dielectric coefficients by GPR. This paper proposes the solutions of inverse analysis for inhomogeneous dielectric coefficients of pavement materials used GPR data. Two examples are given to assess the validity of genetic algorithms in inversion of pavement materials inhomogeneous dielectricity. The results show that genetic algorithm can converge into true solutions well. The backcalculated inhomogeneous dielectric coefficients can help to evaluate pavement properties further.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Budanov, V. E., N. L. Yevich e N. N. Suslov. "Permittivity Measurement Technique for Inhomogeneous Dielectric Materials". Telecommunications and Radio Engineering 65, n.º 15 (2006): 1439–51. http://dx.doi.org/10.1615/telecomradeng.v65.i15.80.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Roganova, N. A., e G. Z. Sharafutdinov. "Identification of mechanical properties of inhomogeneous materials". Mechanics of Solids 47, n.º 4 (julho de 2012): 448–53. http://dx.doi.org/10.3103/s0025654412040097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wang, Xu, Dongxing Mao, Wuzhou Yu e Zaixiu Jiang. "Sound barriers from materials of inhomogeneous impedance". Journal of the Acoustical Society of America 137, n.º 6 (junho de 2015): 3190–97. http://dx.doi.org/10.1121/1.4921279.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Elmaimouni, L., J. E. Lefebvre, A. Raherison e F. E. Ratolojanahary. "Acoustical Guided Waves in Inhomogeneous Cylindrical Materials". Ferroelectrics 372, n.º 1 (14 de novembro de 2008): 115–23. http://dx.doi.org/10.1080/00150190802382074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Crocker, John C., M. T. Valentine, Eric R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh e D. A. Weitz. "Two-Point Microrheology of Inhomogeneous Soft Materials". Physical Review Letters 85, n.º 4 (24 de julho de 2000): 888–91. http://dx.doi.org/10.1103/physrevlett.85.888.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Vislov, I. S., S. N. Kladiev, S. M. Slobodyan e A. M. Bogdan. "A Batch Feeder for Inhomogeneous Bulk Materials". IOP Conference Series: Materials Science and Engineering 124 (abril de 2016): 012033. http://dx.doi.org/10.1088/1757-899x/124/1/012033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Haddi, A., e D. Weichert. "Elastic-plastic J-integral in inhomogeneous materials". Computational Materials Science 8, n.º 3 (julho de 1997): 251–60. http://dx.doi.org/10.1016/s0927-0256(97)00008-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bernabei, D., F. Ganovelli, N. Pietroni, P. Cignoni, S. Pattanaik e R. Scopigno. "Real-time single scattering inside inhomogeneous materials". Visual Computer 26, n.º 6-8 (21 de abril de 2010): 583–93. http://dx.doi.org/10.1007/s00371-010-0449-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Scibetta, M. "Master Curve analysis of potentially inhomogeneous materials". Engineering Fracture Mechanics 94 (novembro de 2012): 56–70. http://dx.doi.org/10.1016/j.engfracmech.2012.07.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kichigin, A. F., A. E. Kolosov, V. V. Klyavlin e V. G. Sidyachenko. "Probabilistic-geometric model of structurally inhomogeneous materials". Soviet Mining Science 24, n.º 2 (março de 1988): 87–94. http://dx.doi.org/10.1007/bf02497828.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Meister, J. J. "Ultrasonic methods in evaluation of inhomogeneous materials". Signal Processing 14, n.º 3 (abril de 1988): 306. http://dx.doi.org/10.1016/0165-1684(88)90086-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Zhu, S. B., J. Lee e G. W. Robinson. "Non-Maxwell velocity distributions in inhomogeneous materials". Journal of Fusion Energy 9, n.º 4 (dezembro de 1990): 465–67. http://dx.doi.org/10.1007/bf01588279.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Maugin, Gérard A., Marcelo Epstein e Carmine Trimarco. "Pseudomomentum and material forces in inhomogeneous materials". International Journal of Solids and Structures 29, n.º 14-15 (1992): 1889–900. http://dx.doi.org/10.1016/0020-7683(92)90180-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Furukawa, Akira, e Hajime Tanaka. "Inhomogeneous flow and fracture of glassy materials". Nature Materials 8, n.º 7 (14 de junho de 2009): 601–9. http://dx.doi.org/10.1038/nmat2468.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Kubicki, B. "About endurance limit of ductile inhomogeneous materials". Journal of Materials Science 31, n.º 9 (1996): 2475–79. http://dx.doi.org/10.1007/bf01152964.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Maekawa, S., e J. Inoue. "Giant magneto-transport phenomena in inhomogeneous materials". Materials Science and Engineering: B 31, n.º 1-2 (abril de 1995): 11–16. http://dx.doi.org/10.1016/0921-5107(94)08024-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Goldsmid, H. J., e J. W. Sharp. "The thermal conductivity of inhomogeneous thermoelectric materials". physica status solidi (b) 241, n.º 11 (setembro de 2004): 2571–74. http://dx.doi.org/10.1002/pssb.200402048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Qi, Yao, Duo Chen, Chao Sun, Qingyu Hai e Xiaopeng Zhao. "The Influence of Electroluminescent Inhomogeneous Phase Addition on Enhancing MgB2 Superconducting Performance and Magnetic Flux Pinning". Materials 17, n.º 8 (19 de abril de 2024): 1903. http://dx.doi.org/10.3390/ma17081903.

Texto completo da fonte
Resumo:
As a highly regarded superconducting material with a concise layered structure, MgB2 has attracted significant scientific attention and holds vast potential for applications. However, its limited current-carrying capacity under high magnetic fields has greatly hindered its practical use. To address this issue, we have enhanced the superconducting performance of MgB2 by incorporating inhomogeneous phase nanostructures of p-n junctions with electroluminescent properties. Through temperature-dependent measurements of magnetization, electronic specific heat, and Hall coefficient under various magnetic fields, we have confirmed the crucial role of inhomogeneous phase electroluminescent nanostructures in improving the properties of MgB2. Experimental results demonstrate that the introduction of electroluminescent inhomogeneous phases effectively enhances the superconducting performance of MgB2. Moreover, by controlling the size of the electroluminescent inhomogeneous phases and optimizing grain connectivity, density, and microstructural uniformity, we can further improve the critical temperature (TC) and flux-pinning capability of MgB2 superconducting materials. Comprehensive studies on the physical properties of MgB2 superconducting structures added with p-n junction electroluminescent inhomogeneous phases also confirm the general effectiveness of electroluminescent inhomogeneous phases in enhancing the performance of superconducting materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Kolednik, O., J. Predan, G. X. Shan, N. K. Simha e F. D. Fischer. "On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials". International Journal of Solids and Structures 42, n.º 2 (janeiro de 2005): 605–20. http://dx.doi.org/10.1016/j.ijsolstr.2004.06.064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wapenaar, Kees, e Evert Slob. "Reciprocity and Representations for Wave Fields in 3D Inhomogeneous Parity-Time Symmetric Materials". Symmetry 14, n.º 11 (25 de outubro de 2022): 2236. http://dx.doi.org/10.3390/sym14112236.

Texto completo da fonte
Resumo:
Inspired by recent developments in wave propagation and scattering experiments with parity-time (PT) symmetric materials, we discuss reciprocity and representation theorems for 3D inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified matrix-vector wave equation which accounts for acoustic, quantum-mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Based on the symmetry properties of the operator matrix in this equation, we derive unified reciprocity theorems for wave fields in 3D arbitrary inhomogeneous media and 3D inhomogeneous media with PT-symmetry. These theorems form the basis for deriving unified wave field representations and relations between reflection and transmission responses in such media. Among the potential applications are interferometric Green’s matrix retrieval and Marchenko-type Green’s matrix retrieval in PT-symmetric materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Zhao, Jing, Fei Zhu, Liyou Xu, Yong Tang e Sheng Li. "A homogenization method for nonlinear inhomogeneous elastic materials". Virtual Reality & Intelligent Hardware 3, n.º 2 (abril de 2021): 156–70. http://dx.doi.org/10.1016/j.vrih.2021.01.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Molchanov, I. S., S. N. Chiu e S. A. Zuyev. "Design of inhomogeneous materials with given structural properties". Physical Review E 62, n.º 4 (1 de outubro de 2000): 4544–52. http://dx.doi.org/10.1103/physreve.62.4544.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Arzamaskova, L. M., E. E. Evdokimov e O. V. Konovalov. "Research of Construction Elements of Structure-inhomogeneous Materials". IOP Conference Series: Materials Science and Engineering 463 (31 de dezembro de 2018): 032074. http://dx.doi.org/10.1088/1757-899x/463/3/032074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Jiang, Hai, Robert Penno, Krishna M. Pasala, Leo Kempel e Stephan Schneider. "Broadband Microstrip Leaky Wave Antenna With Inhomogeneous Materials". IEEE Transactions on Antennas and Propagation 57, n.º 5 (maio de 2009): 1558–62. http://dx.doi.org/10.1109/tap.2009.2016785.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Takamatsu, Hiroyuki, Shingo Sumie, Tsutomu Morimoto, Yutaka Kawata, Yoshiro Nishimoto, Takefumi Horiuchi, Hiroshi Nakayama, Takashi Kita e Taneo Nishino. "Theoretical Analysis of Photoacoustic Displacement for Inhomogeneous Materials". Japanese Journal of Applied Physics 33, Part 1, No. 10 (15 de outubro de 1994): 6032–38. http://dx.doi.org/10.1143/jjap.33.6032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Nan, Ce-Wen, e G. J. Weng. "Theoretical approach to effective electrostriction in inhomogeneous materials". Physical Review B 61, n.º 1 (1 de janeiro de 2000): 258–65. http://dx.doi.org/10.1103/physrevb.61.258.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kadigrobov, A., R. I. Shekhter e M. Jonson. "Triplet superconducting proximity effect in inhomogeneous magnetic materials". Low Temperature Physics 27, n.º 9 (setembro de 2001): 760–66. http://dx.doi.org/10.1063/1.1401185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Tosaki, Mitsuo, Daisuke Ohsawa e Yasuhito Isozumi. "Experimental energy straggling of protons in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219-220 (junho de 2004): 241–45. http://dx.doi.org/10.1016/j.nimb.2004.01.061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia