Literatura científica selecionada sobre o tema "Inhomogeneous materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Inhomogeneous materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Inhomogeneous materials"

1

Grimvall, G., e M. S�derberg. "Transport in macroscopically inhomogeneous materials". International Journal of Thermophysics 7, n.º 1 (janeiro de 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Klemens, P. G. "Thermal conductivity of inhomogeneous materials". International Journal of Thermophysics 10, n.º 6 (novembro de 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Nan, Ce-Wen. "Physics of inhomogeneous inorganic materials". Progress in Materials Science 37, n.º 1 (janeiro de 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko e Nataliia Morkovska. "Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials". Materials Science Forum 1068 (19 de agosto de 2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Texto completo da fonte
Resumo:
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Milton, Graeme W. "Analytic materials". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, n.º 2195 (novembro de 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Texto completo da fonte
Resumo:
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mironov, Vladimir I., Olga A. Lukashuk e Dmitry A. Ogorelkov. "On Durability of Structurally Inhomogeneous Materials". Materials Science Forum 1031 (maio de 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Texto completo da fonte
Resumo:
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dyakonov, O. M. "Briquetting of structurally inhomogeneous porous materials". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, n.º 2 (7 de julho de 2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Texto completo da fonte
Resumo:
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Alshits, V. I., e H. O. K. Kirchner. "Cylindrically anisotropic, radially inhomogeneous elastic materials". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, n.º 2007 (8 de março de 2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhou, Q., Z. Bian e A. Shakouri. "Pulsed cooling of inhomogeneous thermoelectric materials". Journal of Physics D: Applied Physics 40, n.º 14 (29 de junho de 2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO e Yoshinobu TANIGAWA. "OS0121 Plate Theories of inhomogeneous materials". Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Inhomogeneous materials"

1

Feder, David. "Inhomogeneous d-wave superconductors /". *McMaster only, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Barabash, Sergey V. "Topics in the Physics of Inhomogeneous Materials". The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1053637716.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Poladian, Leon. "Effective transport and optical properties of composite materials". Phd thesis, Department of Theoretical Physics, 1990. http://hdl.handle.net/2123/11724.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Koss, Robert Stephen. "Numerical studies of macroscopically disordered materials /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487322984316204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Larsson, Ashley Ian. "Mathematical aspects of wave theory for inhomogeneous materials /". Title page, table of contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phl334.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kusuma, Jeffry. "On some mathematical aspects of deformations of inhomogeneous elastic materials /". Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phk97.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kinkade, Kyle Richard. "Divergence form equations arising in models for inhomogeneous materials". Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/900.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Azis, Mohammad Ivan. "On the boundary integral equation method for the solution of some problems for inhomogeneous media". Title page, contents and summary only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pha995.pdf.

Texto completo da fonte
Resumo:
Errata pasted onto front end-paper. Bibliography: leaves 101-104. This thesis employs integral equation methods, or boundary element methods (BEMs), for the solution of three kinds of engineering problems associated with inhomogeneous materials or media: a class of elliptical boundary value problems (BVPs), the boundary value problem of static linear elasticity, and the calculation of the solution of the initial-boundary value problem of non-linear heat conduction for anisotropic media.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Huang, Zhoushen. "Spontaneous formation of charge inhomogeneity on silica surface immersed in water /". View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202007%20HUANG.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gammage, Justin Wilkinson D. S. "Damage in heterogeneous aluminum alloys /". *McMaster only, 2002.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Inhomogeneous materials"

1

A, Dobrowolski Jerzy, Verly Pierre G, Society of Photo-optical Instrumentation Engineers. e American Physical Society, eds. Inhomogeneous and quasi-inhomogeneous optical coatings: 19-20 August 1993, Québec, Canada. Bellingham, WA: SPIE, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hertz, John. Disordered systems. Stockholm, Sweden: Royal Academy of Sciences, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Alippi, Adriano, e Walter G. Mayer, eds. Ultrasonic Methods in Evaluation of Inhomogeneous Materials. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Adriano, Alippi, e Mayer Walter G, eds. Ultrasonic methods in evaluation of inhomogeneous materials. Dordrecht: Martinus Nijhoff, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Alippi, Adriano. Ultrasonic Methods in Evaluation of Inhomogeneous Materials. Dordrecht: Springer Netherlands, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Shik, A. Y. Electronic properties of inhomogeneous semiconductors. Luxembourg: Gordon and Breach, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nemat-Nasser, S. Micromechanics: Overall properties of heterogeneous materials. Amsterdam: North-Holland, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Nemat-Nasser, S. Micromechanics: Overall properties of heterogeneous materials. 2a ed. Amsterdam: Elsevier, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Nantes, Iseli L., e Sergio Brochsztain. Catalysis and photochemistry in heterogeneous media, 2007. Trivandrum: Research Signpost, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

S, Torquato, Krajcinovic Dusan, American Society of Mechanical Engineers. Applied Mechanics Division. e American Society of Mechanical Engineers. Winter Meeting, eds. Macroscopic behavior of heterogeneous materials from the microstructure: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York: The Society, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Inhomogeneous materials"

1

Jin, Xiaoqing, Leon M. Keer, Q. Jane Wang e Eugene L. Chez. "Inhomogeneous Inclusion in Materials". In Encyclopedia of Tribology, 1832. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Q. Jane, e Dong Zhu. "EHL of Inhomogeneous Materials". In Interfacial Mechanics, 451–80. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429131011-13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Dryzek, Jerzy. "Positron in Inhomogeneous Matter". In SpringerBriefs in Materials, 53–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-41093-2_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Grigorenko, Alexander Ya, Wolfgang H. Müller e Igor A. Loza. "Electric Elastic Waves in Layered Inhomogeneous and Continuously Inhomogeneous Piezoceramic Cylinders". In Advanced Structured Materials, 111–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74199-0_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Gagnepain, J. J. "Piezoelectric Materials". In Ultrasonic Methods in Evaluation of Inhomogeneous Materials, 243–62. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Steck, Elmar. "Crack Extension in Inhomogeneous Materials". In Lecture Notes in Engineering, 94–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88479-5_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Goryacheva, Irina. "Wear Contact of Inhomogeneous Materials". In Encyclopedia of Tribology, 3987–92. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_540.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hendriks, M. A. N., e C. W. J. Oomens. "Identification Aspects of Inhomogeneous Materials". In Inverse Problems in Engineering Mechanics, 301–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-52439-4_29.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Veltri, A., A. V. Sukhov, R. Caputo, L. De Sio, M. Infusino e C. P. Umeton. "CHAPTER 5. Inhomogeneous Photopolymerization in Multicomponent Media". In Photocured Materials, 87–102. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782620075-00087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Zarembowitch, A., J. Berger, M. Fischer e F. Michard. "Inhomogeneous Materials Studied with Brillouin Scattering". In Ultrasonic Methods in Evaluation of Inhomogeneous Materials, 85–104. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Inhomogeneous materials"

1

Kharevych, Lily, Patrick Mullen, Houman Owhadi e Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials". In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531357.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bian, Zhixi, e Ali Shakouri. "Cooling Enhancement Using Inhomogeneous Thermoelectric Materials". In 2006 25th International Conference on Thermoelectrics. IEEE, 2006. http://dx.doi.org/10.1109/ict.2006.331365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Aspnes, D. E. "Electrodynamic Properties of Nanoscopically Inhomogeneous Materials". In ADVANCED SUMMER SCHOOL IN PHYSICS 2006: Frontiers in Contemporary Physics: EAV06. AIP, 2007. http://dx.doi.org/10.1063/1.2563196.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Dogariu, Aristide C. "Microstructural characterization of inhomogeneous media". In Laser-Induced Damage in Optical Materials: 1999, editado por Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, Keith L. Lewis e M. J. Soileau. SPIE, 2000. http://dx.doi.org/10.1117/12.379334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Fesenko, Volodymyr I., e Igor A. Sukhoivanov. "Polarization Conversion in Inhomogeneous Anisotropic Multilayer Structures". In Advances in Optical Materials. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/aiom.2012.jth2a.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Vegni, Lucio, Alessandro Toscano e Filiberto Bilotti. "Properties of inhomogeneous materials for microwave radiation components". In International Symposium on Optical Science and Technology, editado por Akhlesh Lakhtakia, Werner S. Weiglhofer e Russell F. Messier. SPIE, 2000. http://dx.doi.org/10.1117/12.390603.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Genack, Azriel Z., Yiming Huang, Chushun Tian, Victor A. Gopar e Ping Fang. "Invariance Principle for Wave Propagation inside Inhomogeneous Materials". In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.jm6a.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Knyaz, A. "Isoimpedance inhomogeneous magnetodielectrics-wave materials for unusual applications". In IEEE Antennas and Propagation Society International Symposium 1997. Digest. IEEE, 1997. http://dx.doi.org/10.1109/aps.1997.625426.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Nakamura, Takahide, Ryo Kobayashi e Shuji Ogata. "Recursive Coarse-Grained Particle Method for Inhomogeneous Materials". In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1130-w01-09.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ramírez, Giovanni. "Quantum entanglement in inhomogeneous 1D systems". In ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II: Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics (AMME 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5031699.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Inhomogeneous materials"

1

Bass, B. R. (Fracture mechanics of inhomogeneous materials). Office of Scientific and Technical Information (OSTI), outubro de 1990. http://dx.doi.org/10.2172/6548880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bian, Zhixi, e Ali Shakouri. Cooling Enhancement Using Inhomogeneous Thermoelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada459926.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Becker, Terrence Lee. Gradient effects on the fracture of inhomogeneous materials. Office of Scientific and Technical Information (OSTI), maio de 2000. http://dx.doi.org/10.2172/764395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

McCall, Katherine R. Application of Resonant Ultrasound Spectroscopy to Inhomogeneous Materials. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2000. http://dx.doi.org/10.21236/ada381149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Schovanec, L., e J. R. Walton. On the Order of the Stress Singularity for an Anti-Plane Shear Crack at the Interface of Two Bonded Inhomogeneous Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1986. http://dx.doi.org/10.21236/ada175139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Muhlestein, Michael. Willis coupling in one-dimensional layered bulk media. Engineer Research and Development Center (U.S.), novembro de 2022. http://dx.doi.org/10.21079/11681/45862.

Texto completo da fonte
Resumo:
Willis coupling, which couples the constitutive equations of an acoustical material, has been applied to acoustic metasurfaces with promising results. However, less is understood about Willis coupling in bulk media. In this paper a multiple-scales homogenization method is used to analyze the source and interpretation of Willis coupling in one-dimensional bulk media without any hidden degrees of freedom, or one-dimensional layered media. As expected from previous work, Willis coupling is shown to arise from geometric asymmetries, but is further shown to depend greatly on the measurement position. In addition, a discussion of the predicted material properties, including Willis coupling, of macroscopically inhomogeneous media is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Prinja, Anil K., e Corey Skinner. Benchmark Solutions for Radiation Transport in Stochastic Media with Inhomogeneous Material Statistics. Office of Scientific and Technical Information (OSTI), junho de 2020. http://dx.doi.org/10.2172/1634291.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia