Artigos de revistas sobre o tema "Inhibitory synapse"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Inhibitory synapse".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Pettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge e Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development". Journal of Cell Biology 200, n.º 3 (28 de janeiro de 2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Texto completo da fonteDejanovic, Borislav, Tiffany Wu, Ming-Chi Tsai, David Graykowski, Vineela D. Gandham, Christopher M. Rose, Corey E. Bakalarski et al. "Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models". Nature Aging 2, n.º 9 (20 de setembro de 2022): 837–50. http://dx.doi.org/10.1038/s43587-022-00281-1.
Texto completo da fonteHu, Xiaoge, Jian-hong Luo e Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Texto completo da fonteSuckow, Arthur T., Davide Comoletti, Megan A. Waldrop, Merrie Mosedale, Sonya Egodage, Palmer Taylor e Steven D. Chessler. "Expression of Neurexin, Neuroligin, and Their Cytoplasmic Binding Partners in the Pancreatic β-Cells and the Involvement of Neuroligin in Insulin Secretion". Endocrinology 149, n.º 12 (28 de agosto de 2008): 6006–17. http://dx.doi.org/10.1210/en.2008-0274.
Texto completo da fonteOverstreet, Linda S., e Gary L. Westbrook. "Synapse Density Regulates Independence at Unitary Inhibitory Synapses". Journal of Neuroscience 23, n.º 7 (1 de abril de 2003): 2618–26. http://dx.doi.org/10.1523/jneurosci.23-07-02618.2003.
Texto completo da fonteHines, Pamela J. "Inhibitory synapse specificity". Science 363, n.º 6425 (24 de janeiro de 2019): 360.6–361. http://dx.doi.org/10.1126/science.363.6425.360-f.
Texto completo da fonteJasinska, Malgorzata, Ewa Siucinska, Ewa Jasek, Jan A. Litwin, Elzbieta Pyza e Malgorzata Kossut. "Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex". Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9828517.
Texto completo da fonteJasinska, Malgorzata, Ewa Siucinska, Stansislaw Glazewski, Elzbieta Pyza e And Kossut. "Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse". Acta Neurobiologiae Experimentalis 66, n.º 2 (30 de junho de 2006): 99–104. http://dx.doi.org/10.55782/ane-2006-1595.
Texto completo da fonteWilson, Emily S., e Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration". Molecular Biology of the Cell 29, n.º 24 (26 de novembro de 2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Texto completo da fonteBarreira da Silva, Rosa, Claudine Graf e Christian Münz. "Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells". Blood 118, n.º 25 (15 de dezembro de 2011): 6487–98. http://dx.doi.org/10.1182/blood-2011-07-366328.
Texto completo da fonteTreanor, Bebhinn, Peter M. P. Lanigan, Sunil Kumar, Chris Dunsby, Ian Munro, Egidijus Auksorius, Fiona J. Culley et al. "Microclusters of inhibitory killer immunoglobulin–like receptor signaling at natural killer cell immunological synapses". Journal of Cell Biology 174, n.º 1 (26 de junho de 2006): 153–61. http://dx.doi.org/10.1083/jcb.200601108.
Texto completo da fonteTakesian, Anne E., Vibhakar C. Kotak e Dan H. Sanes. "Age-dependent effect of hearing loss on cortical inhibitory synapse function". Journal of Neurophysiology 107, n.º 3 (fevereiro de 2012): 937–47. http://dx.doi.org/10.1152/jn.00515.2011.
Texto completo da fonteLegendre, P. "The glycinergic inhibitory synapse". Cellular and Molecular Life Sciences 58, n.º 5 (maio de 2001): 760–93. http://dx.doi.org/10.1007/pl00000899.
Texto completo da fonteFlores, Carmen E., Irina Nikonenko, Pablo Mendez, Jean-Marc Fritschy, Shiva K. Tyagarajan e Dominique Muller. "Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation". Proceedings of the National Academy of Sciences 112, n.º 1 (22 de dezembro de 2014): E65—E72. http://dx.doi.org/10.1073/pnas.1411170112.
Texto completo da fonteHolmes, William R., e William B. Levy. "Quantifying the Role of Inhibition in Associative Long-Term Potentiation in Dentate Granule Cells With Computational Models". Journal of Neurophysiology 78, n.º 1 (1 de julho de 1997): 103–16. http://dx.doi.org/10.1152/jn.1997.78.1.103.
Texto completo da fonteRamaglia, Valeria, Mohit Dubey, M. Alfonso Malpede, Naomi Petersen, Sharon I. de Vries, Shanzeh M. Ahmed, Dennis S. W. Lee et al. "Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory". Acta Neuropathologica 142, n.º 4 (25 de junho de 2021): 643–67. http://dx.doi.org/10.1007/s00401-021-02338-8.
Texto completo da fonteSu, Jianmin, Jiang Chen, Kumiko Lippold, Aboozar Monavarfeshani, Gabriela Lizana Carrillo, Rachel Jenkins e Michael A. Fox. "Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex". Journal of Cell Biology 212, n.º 6 (14 de março de 2016): 721–36. http://dx.doi.org/10.1083/jcb.201509085.
Texto completo da fonteWoodin, Melanie A., Toshiro Hamakawa, Mayumi Takasaki, Ken Lukowiak e Naweed I. Syed. "Trophic Factor-Induced Plasticity of Synaptic Connections Between Identified Lymnaea Neurons". Learning & Memory 6, n.º 3 (1 de maio de 1999): 307–16. http://dx.doi.org/10.1101/lm.6.3.307.
Texto completo da fonteHoon, Mrinalini, Raunak Sinha, Haruhisa Okawa, Sachihiro C. Suzuki, Arlene A. Hirano, Nicholas Brecha, Fred Rieke e Rachel O. L. Wong. "Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells". Proceedings of the National Academy of Sciences 112, n.º 41 (29 de setembro de 2015): 12840–45. http://dx.doi.org/10.1073/pnas.1510483112.
Texto completo da fonteELMARIAH, SARINA B., ETHAN G. HUGHES, EUN JOO OH e RITA J. BALICE-GORDON. "Neurotrophin signaling among neurons and glia during formation of tripartite synapses". Neuron Glia Biology 1, n.º 4 (novembro de 2004): 339–49. http://dx.doi.org/10.1017/s1740925x05000189.
Texto completo da fonteJasinska, Malgorzata, Anna Grzegorczyk, Ewa Jasek, Jan Litwin, Malgorzata Kossut, Grazyna Barbacka-Surowiak e Elzbieta Pyza. "Daily rhythm of synapse turnover in mouse somatosensory cortex". Acta Neurobiologiae Experimentalis 74, n.º 1 (31 de março de 2014): 104–10. http://dx.doi.org/10.55782/ane-2014-1977.
Texto completo da fonteKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka e Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons". Journal of Cell Biology 194, n.º 2 (25 de julho de 2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Texto completo da fonteWoo, Jooyeon, Seok-Kyu Kwon, Jungyong Nam, Seungwon Choi, Hideto Takahashi, Dilja Krueger, Joohyun Park et al. "The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development". Journal of Cell Biology 201, n.º 6 (10 de junho de 2013): 929–44. http://dx.doi.org/10.1083/jcb.201209132.
Texto completo da fonteLevinson, Joshua N., e Alaa El-Husseini. "New Players Tip the Scales in the Balance between Excitatory and Inhibitory Synapses". Molecular Pain 1 (1 de janeiro de 2005): 1744–8069. http://dx.doi.org/10.1186/1744-8069-1-12.
Texto completo da fonteThakar, Sonal, Liqing Wang, Ting Yu, Mao Ye, Keisuke Onishi, John Scott, Jiaxuan Qi et al. "Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation". Proceedings of the National Academy of Sciences 114, n.º 4 (5 de janeiro de 2017): E610—E618. http://dx.doi.org/10.1073/pnas.1612062114.
Texto completo da fonteLee, Sang-Eun, Yoonju Kim, Jeong-Kyu Han, Hoyong Park, Unghwi Lee, Myeongsu Na, Soomin Jeong, ChiHye Chung, Gianluca Cestra e Sunghoe Chang. "nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology". Proceedings of the National Academy of Sciences 113, n.º 24 (25 de maio de 2016): 6749–54. http://dx.doi.org/10.1073/pnas.1600944113.
Texto completo da fonteOjima, Daiki, Yoko Tominaga, Takashi Kubota, Atsushi Tada, Hiroo Takahashi, Yasushi Kishimoto, Takashi Tominaga e Tohru Yamamoto. "Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of d-Cycloserine". International Journal of Molecular Sciences 25, n.º 17 (6 de setembro de 2024): 9674. http://dx.doi.org/10.3390/ijms25179674.
Texto completo da fonteApollonio, Benedetta, Mariam Fanous, Mohamed-Reda Benmebarek, Stephen Devereux, Patrick Hagner, Michael Pourdehnad, Anita K. Gandhi, Piers E. Patten e Alan G. Ramsay. "CC-122 Repairs T Cell Activation in Chronic Lymphocytic Leukemia That Results in a Concomitant Increase in PD-1:PD-L1 and CTLA-4 Immune Checkpoint Expression at the Immunological Synapse". Blood 126, n.º 23 (3 de dezembro de 2015): 1738. http://dx.doi.org/10.1182/blood.v126.23.1738.1738.
Texto completo da fonteIshibashi, Masaru, Kiyoshi Egawa e Atsuo Fukuda. "Diverse Actions of Astrocytes in GABAergic Signaling". International Journal of Molecular Sciences 20, n.º 12 (18 de junho de 2019): 2964. http://dx.doi.org/10.3390/ijms20122964.
Texto completo da fonteZhang, Lulu, Yongzhi Zhang, Furong Liu, Qingyuan Chen, Yangbo Lian e Quanlong Ma. "On-Chip Photonic Synapses with All-Optical Memory and Neural Network Computation". Micromachines 14, n.º 1 (27 de dezembro de 2022): 74. http://dx.doi.org/10.3390/mi14010074.
Texto completo da fonteWichmann, Carolin, e Thomas Kuner. "Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences". Physiological Reviews 102, n.º 1 (1 de janeiro de 2022): 269–318. http://dx.doi.org/10.1152/physrev.00039.2020.
Texto completo da fonteKuljis, Dika A., Kristina D. Micheva, Ajit Ray, Waja Wegner, Ryan Bowman, Daniel V. Madison, Katrin I. Willig e Alison L. Barth. "Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons". International Journal of Molecular Sciences 22, n.º 18 (17 de setembro de 2021): 10032. http://dx.doi.org/10.3390/ijms221810032.
Texto completo da fonteGonzalez-Burgos, Guillermo, Diana C. Rotaru, Aleksey V. Zaitsev, Nadezhda V. Povysheva e David A. Lewis. "GABA Transporter GAT1 Prevents Spillover at Proximal and Distal GABA Synapses Onto Primate Prefrontal Cortex Neurons". Journal of Neurophysiology 101, n.º 2 (fevereiro de 2009): 533–47. http://dx.doi.org/10.1152/jn.91161.2008.
Texto completo da fonteHarrison, John M., Richard G. Allen, Michael J. Pellegrino, John T. Williams e Olivier J. Manzoni. "Chronic Morphine Treatment Alters Endogenous Opioid Control of Hippocampal Mossy Fiber Synaptic Transmission". Journal of Neurophysiology 87, n.º 5 (1 de maio de 2002): 2464–70. http://dx.doi.org/10.1152/jn.2002.87.5.2464.
Texto completo da fonteQian, N., e T. J. Sejnowski. "When is an inhibitory synapse effective?" Proceedings of the National Academy of Sciences 87, n.º 20 (1 de outubro de 1990): 8145–49. http://dx.doi.org/10.1073/pnas.87.20.8145.
Texto completo da fontePEREIRA, T., M. S. BAPTISTA, J. KURTHS e M. B. REYES. "ONSET OF PHASE SYNCHRONIZATION IN NEURONS WITH CHEMICAL SYNAPSE". International Journal of Bifurcation and Chaos 17, n.º 10 (outubro de 2007): 3545–49. http://dx.doi.org/10.1142/s0218127407019342.
Texto completo da fonteGrimes, William N., Jun Zhang, Hua Tian, Cole W. Graydon, Mrinalini Hoon, Fred Rieke e Jeffrey S. Diamond. "Complex inhibitory microcircuitry regulates retinal signaling near visual threshold". Journal of Neurophysiology 114, n.º 1 (julho de 2015): 341–53. http://dx.doi.org/10.1152/jn.00017.2015.
Texto completo da fonteZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae e Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de outubro de 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texto completo da fonteFenyves, Bánk G., Gábor S. Szilágyi, Zsolt Vassy, Csaba Sőti e Peter Csermely. "Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network". PLOS Computational Biology 16, n.º 12 (21 de dezembro de 2020): e1007974. http://dx.doi.org/10.1371/journal.pcbi.1007974.
Texto completo da fonteLee, Seong-Eun, e Gum Hwa Lee. "Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons". International Journal of Molecular Sciences 22, n.º 14 (13 de julho de 2021): 7510. http://dx.doi.org/10.3390/ijms22147510.
Texto completo da fonteBao, Shaowen, Lu Chen, Xiaoxi Qiao e Richard F. Thompson. "Transgenic Brain-Derived Neurotrophic Factor Modulates a Developing Cerebellar Inhibitory Synapse". Learning & Memory 6, n.º 3 (1 de maio de 1999): 276–83. http://dx.doi.org/10.1101/lm.6.3.276.
Texto completo da fonteGardner, D. "Sets of synaptic currents paired by common presynaptic or postsynaptic neurons". Journal of Neurophysiology 61, n.º 4 (1 de abril de 1989): 845–53. http://dx.doi.org/10.1152/jn.1989.61.4.845.
Texto completo da fonteAli, Heba, Lena Marth e Dilja Krueger-Burg. "Neuroligin-2 as a central organizer of inhibitory synapses in health and disease". Science Signaling 13, n.º 663 (22 de dezembro de 2020): eabd8379. http://dx.doi.org/10.1126/scisignal.abd8379.
Texto completo da fonteUnda, Brianna K., Vickie Kwan e Karun K. Singh. "Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1". Neural Plasticity 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7694385.
Texto completo da fonteTate, Kinsley, Brenna Kirk, Alisia Tseng, Abigail Ulffers e Karen Litwa. "Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Developing Neural Circuits in a Model of the Human Fetal Cortex". International Journal of Molecular Sciences 22, n.º 19 (28 de setembro de 2021): 10457. http://dx.doi.org/10.3390/ijms221910457.
Texto completo da fonteRYBICKA, KRYSTYNA KIELAN, e SUSAN B. UDIN. "Connections of contralaterally projecting isthmotectal axons and GABA-immunoreactive neurons in Xenopus tectum: An ultrastructural study". Visual Neuroscience 22, n.º 3 (maio de 2005): 305–15. http://dx.doi.org/10.1017/s0952523805223064.
Texto completo da fonteLevinson, Joshua N., Nadège Chéry, Kun Huang, Tak Pan Wong, Kimberly Gerrow, Rujun Kang, Oliver Prange, Yu Tian Wang e Alaa El-Husseini. "Neuroligins Mediate Excitatory and Inhibitory Synapse Formation". Journal of Biological Chemistry 280, n.º 17 (21 de fevereiro de 2005): 17312–19. http://dx.doi.org/10.1074/jbc.m413812200.
Texto completo da fonteSakimoto, Yuya, Paw Min-Thein Oo, Makoto Goshima, Itsuki Kanehisa, Yutaro Tsukada e Dai Mitsushima. "Significance of GABAA Receptor for Cognitive Function and Hippocampal Pathology". International Journal of Molecular Sciences 22, n.º 22 (18 de novembro de 2021): 12456. http://dx.doi.org/10.3390/ijms222212456.
Texto completo da fonteNiraula, Suraj, Shirley ShiDu Yan e Jaichandar Subramanian. "Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity". Journal of Neuroscience, 27 de novembro de 2023, JN—RM—0702–23. http://dx.doi.org/10.1523/jneurosci.0702-23.2023.
Texto completo da fonteBoxer, Emma E., e Jason Aoto. "Neurexins and their ligands at inhibitory synapses". Frontiers in Synaptic Neuroscience 14 (21 de dezembro de 2022). http://dx.doi.org/10.3389/fnsyn.2022.1087238.
Texto completo da fonte