Literatura científica selecionada sobre o tema "InGaAs photodiodes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "InGaAs photodiodes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "InGaAs photodiodes"
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V. et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes". Technical Physics Letters 48, n.º 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.
Texto completo da fonteBAPTISTA, B. J., e S. L. MUFSON. "RADIATION HARDNESS STUDIES OF InGaAs AND Si PHOTODIODES AT 30, 52, & 98 MeV AND FLUENCES TO 5 × 1011 PROTONS/CM2". Journal of Astronomical Instrumentation 02, n.º 01 (setembro de 2013): 1250008. http://dx.doi.org/10.1142/s2251171712500080.
Texto completo da fonteZhuravlev, K. S., A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov e M. S. Aksenov. "High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission". Journal of Semiconductors 43, n.º 1 (1 de janeiro de 2022): 012302. http://dx.doi.org/10.1088/1674-4926/43/1/012302.
Texto completo da fonteSun, H., X. Huang, C. P. Chao, S. W. Chen, B. Deng, D. Gong, S. Hou et al. "QTIA, a 2.5 or 10 Gbps 4-channel array optical receiver ASIC in a 65 nm CMOS technology". Journal of Instrumentation 17, n.º 05 (1 de maio de 2022): C05017. http://dx.doi.org/10.1088/1748-0221/17/05/c05017.
Texto completo da fonteCampbell, J. C., B. C. Johnson, G. J. Qua e W. T. Tsang. "Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes". Journal of Lightwave Technology 7, n.º 5 (maio de 1989): 778–84. http://dx.doi.org/10.1109/50.19113.
Texto completo da fonteMartinelli, Ramon U., Thomas J. Zamerowski e Paul A. Longeway. "2.6 μm InGaAs photodiodes". Applied Physics Letters 53, n.º 11 (12 de setembro de 1988): 989–91. http://dx.doi.org/10.1063/1.100050.
Texto completo da fonteYoon, H. W., J. J. Butler, T. C. Larason e G. P. Eppeldauer. "Linearity of InGaAs photodiodes". Metrologia 40, n.º 1 (fevereiro de 2003): S154—S158. http://dx.doi.org/10.1088/0026-1394/40/1/335.
Texto completo da fonteZhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I. e Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode". Semiconductors 57, n.º 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.
Texto completo da fonteWon-Tien Tsang, J. C. Campbell e G. J. Qua. "InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy". IEEE Electron Device Letters 8, n.º 7 (julho de 1987): 294–96. http://dx.doi.org/10.1109/edl.1987.26636.
Texto completo da fonteCampbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua e B. C. Johnson. "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes". Journal of Lightwave Technology 7, n.º 3 (março de 1989): 473–78. http://dx.doi.org/10.1109/50.16883.
Texto completo da fonteTeses / dissertações sobre o assunto "InGaAs photodiodes"
Xie, Shiyu. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes". Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2267/.
Texto completo da fonteXie, Jingjing. "Characterisation of low noise InGaAs/AlAsSb avalanche photodiodes". Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4511/.
Texto completo da fonteFaure, Benoit. "MODELISATION ET OPTIMISATION DES PHOTODIODES A AVALANCHE ET HETEROJONCTION InP/InGaAs". Toulouse, INSA, 1986. http://www.theses.fr/1986ISAT0003.
Texto completo da fonteTabor, Steven Alan. "Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes". PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4760.
Texto completo da fonteDentan, Martin. "Photodiode PIN InGaAs en grands signaux hyperfréquence : modélisation, réalisation et caractérisation". Paris 11, 1989. http://www.theses.fr/1989PA112257.
Texto completo da fonteThe devices coupled to optical fibers in optical links are the laser diode (light emitter) and the P. I. N. Photodiode (light receptor). This thesis concerns the optimization of the photodiode performances, in terms of bandwidth and linearity, in large signal microwave operation. One of the goals is the improvement of the frequency response of this device. Using a small signal modal, we show that we can increase the bandwidth of photodiodes by reducing the active region dimensions. Another important objective is to obtain large signal operation. The absorption of an intense optical signal, by a diode with a very small active region, leads to a non-linear electrical response due to the effects of space-charge. A modal taking into account the equations for the carrier transport in the space-charge region is developed; in particular, it gives the harmonies of the device response. Ln this thesis, we have realized and discuss all the steps necessary for the fabrication of the optical receiver: epitaxy of the material, process of the device and packaging allowing microwave operations. Then the two models described above were experimentally verified by D. C. And microwave electrical characterization. We demonstrate an 18 GHz bandwidth for our photodiode and show in particular that this photodiode has a more linear response than the lasers with direct modulation used in experimental optical links at L. C. R. , for an input electrical power of 0 dBm
An, Serguei. "Material and device characterization of InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ61622.pdf.
Texto completo da fonteLe, Goff Florian. "Intégration de matériaux semi-conducteurs III-V dans des filières de fabrication silicium avancées pour imagerie proche infrarouge". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD034/document.
Texto completo da fonteNowadays short wavelength infrared (SWIR) imaging based on InP/InGaAs photo-diodes is quite popular for uncooled camera. The state of the art technology is a double layer planar heterointerface focal plane array. But, it remains expensive. Its cost comes essentially from the individually hybridization of photo-diodes array with read-out circuit, by the mean of an indium-bumps flip-chip process. We suggest an alternative method for hybridization, in order to lowering the cost and providing a sustainable process to decrease the pixel pitch. It consists in a direct integration by bonding silica of InP/InGaAs/InP structure above a finished read-out circuit (with CMOS technology) and circular diode architecture named “LoopHoles”. This diode consists in via-hole through the III-V materials and bonding silica layer down to top metal layer in the readout circuit for each active pixel. Via-hole is also used to diffuse laterally zinc in III-V layer in order to create p-type doping area. Because of the read-out circuit, temperature of diffusion has to be below 400°C which induces parasitic phenomena’s. We have found that a Hf02 coating on InP surface prevent this degradation while allowing zinc diffusion. We were able to control depth of p-n junction inside InP and InGaAs. We also investigated few steps of the processes like the molecular bonding, via etching and metallization. Finally, we succeeded to produce LoopHole photodiodes on bulk InP and on bonded materials with a high spectral efficiency, low pitch and a lower dark currant of 150 fA at room temperature
Hecht, Anna E. "Thermal Drift Compensation in Non-Uniformity Correction for an InGaAs PIN Photodetector 3D Flash LiDAR Camera". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607959309040459.
Texto completo da fonteOzer, Selcuk. "Insb And Inassb Infrared Photodiodes On Alternative Substrates And Inp/ingaas Quantum Well Infrared Photodetectors: Pixel And Focal Plane Array Performance". Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606097/index.pdf.
Texto completo da fonte1010 and 7.5×
108 cmHz½
/W at 77 K and 240 K, respectively, showing that the alloy is promising for both cooled and near room temperature detectors. Under moderate reverse bias, 80 K RoA product limiting mechanism is trap assisted tunneling, which introduces considerable 1/f noise. InSb/Si photodiodes display peak 77 K detectivity as high as ~1×
1010 cmHz 1/2/W and reasonably high peak quantum efficiency in spite of large lattice mismatch. RoA product of detectors at 80 K is limited by Ohmic leakage with small activation energy (25 meV). Bias and temperature dependence of 1/f noise is in reasonable agreement with Kleinpenning&rsquo
s mobility fluctuation model, confirming the validity of this approach. The second part of the study concentrates on InP/In0.53Ga0.47As QWIPs, and 640×
512 FPA, which to our knowledge, is the largest format InP/InGaAs QWIP FPA reported. InP/InGaAs QWIPs yield quantum efficiency-gain product as high as 0.46 under moderate bias. At 70 K, detector performance is background limited with f/2 aperture up to ~3 V bias where peak responsivity (2.9 A/W) is thirty times higher than that of the Al0.275Ga0.725As/GaAs QWIP with similar spectral response. Impact ionization in InP/InGaAs QWIPs does not start until the average electric-field reaches 25 kV/cm, maintaining high detectivity under moderate bias. The 640×
512 InP/InGaAs QWIP FPA yields noise equivalent temperature difference of ~40 mK at an FPA temperature as high as 77 K and reasonably low NETD even with short integration times (t). 70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under &ndash
0.5 V (t=11 ms) and &ndash
2 V (t=650 Rs) bias, respectively. The results clearly show the potential of InP/InGaAs QWIPs for thermal imaging applications requiring short integration times. Keywords: Cooled infrared detectors, InAsSb, QWIP, focal plane array.
Pogany, Dionyz. "Etude du bruit télégraphique, du courant d’obscurité et des niveaux profonds dans les photodiodes InP/InGaAs/InP en désaccord de maille". Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0044.
Texto completo da fonteDark current and low frequency noise are the principal performance limitations of lattice-mismatched InGaAs/InP linear photodetector arrays for space applications in the 1,7 micrometer wavelength range. Excess noise in these devices has essentially a form of the Random Telegraph Signal (RTS). This work mainly concern the study of physical mechanisme controlling the current and noise. We have performed characterisation, classification and modelling of excess crrents. RTS noise has been studied in time and frequency domain. Results show that RTS noise is due to fluctuations of excess current which flows through a dislocation related extended defetc. This current is modulated by a charge fluctuation or structural reconfiguration of complex defects located at the leakage site. To interpret the results we have developped previously proposed RTS noise models for bipolar devices, Measurments of excess noise have been correlated with spatially resolved technique like LBIC. We discuss the influence of material and technological defects as well as surface and bulk origin of RTS noise
Livros sobre o assunto "InGaAs photodiodes"
Blaser, Markus. Monolithically integrated InGaAs/Inp photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. Konstanz: Hartung-Gorre, 1997.
Encontre o texto completo da fonteBitter, Martin. InP/InGaAs pin-photodiode arrays for parallel optical interconnects and monolithic InP/InGaAs pin/HBT optical receivers for 10-Gb/s and 40-Gb/s. Konstanz: Hartung-Gorre, 2001.
Encontre o texto completo da fonteInGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04776-6.
Texto completo da fonteHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Encontre o texto completo da fonteHuntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.
Encontre o texto completo da fonteO'Reilly, Patrick J. Effects of 30 MEV electron irradation on InGaAsp LEDS and InGaAs photodiodes. 1986.
Encontre o texto completo da fonteYu, Young-June. Noise properties of InGaAs/InAlAs multiquantum-well heterostructure p-i-n photodiodes. 1989.
Encontre o texto completo da fonteBerlin, Technische Universität, ed. InGaAsP-Rippen- und Streifenwellenleiter integriert mit InGaAs-Photodioden durch Vertikal- und Horizontalkupplung: Technologie und physikalische Eigenschaften. 1991.
Encontre o texto completo da fonteZürich, Eidgenössische Technische Hochschule, ed. Monolithically integrated InGaAs/InP photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "InGaAs photodiodes"
Bowers, J. E., C. A. Burrus e R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes". In Picosecond Electronics and Optoelectronics, 180–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_35.
Texto completo da fonteKobayashi, Masahiro, e Takao Kaneda. "Reliability Testing of Planar InGaAs Avalanche Photodiodes". In Semiconductor Device Reliability, 413–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_23.
Texto completo da fonteRyzhii, M., e V. Ryzhii. "Ensemble Monte Carlo Particle Modeling of IngaAs/InP Uni-Traveling-Carrier Photodiodes". In Simulation of Semiconductor Processes and Devices 2001, 312–15. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6244-6_70.
Texto completo da fonteAlbrecht, H. "Pin Photodiodes and Field-Effect Transistors for Monolithically Integrated InP/InGaAs Optoelectronic Circuits". In Micro System Technologies 90, 767–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_110.
Texto completo da fonteŠatka, A., D. W. E. Allsopp, J. Kováč, F. Uherek, B. Rheinländer e V. Gottschalch. "Design of InGaAs/InAIGaAs/InP RCE PIN Photodiode". In Heterostructure Epitaxy and Devices, 301–4. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_54.
Texto completo da fonteZirngibl, M., J. C. Bischoff, R. Sachot, M. Ilegems, P. Beaud e W. Hodel. "An InGaAs/GaAs Strained Superlattice MSM Photodiode for Fast Light Detection at 1.3 μm". In ESSDERC ’89, 77–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_15.
Texto completo da fonteNamekata, Naoto, Shunsuke Adachi e Shuichiro Inoue. "High-Speed Single-Photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 34–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11731-2_4.
Texto completo da fonteMa, Zongfeng, Ming Zhang e Panfeng Wu. "Research on the Optimal Design of Heterodyne Technique Based on the InGaAs-PIN Photodiode". In 5th International Symposium of Space Optical Instruments and Applications, 205–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_20.
Texto completo da fonteSchohe, K., J. Y. Longère, S. Krawczyk, B. Vilotitch, C. Lenoble, M. Villard e X. Hugon. "Scanning Photoluminescence Assessment MOCVD InGaAs/InP Lattice Mismatched Heterostructures During the Fabrication of Photodiode Arrays". In ESSDERC ’89, 503–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_103.
Texto completo da fonteHuntington, Andrew S. "InGaAs Linear-Mode Avalanche Photodiodes". In Encyclopedia of Modern Optics, 415–29. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-803581-8.09421-2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "InGaAs photodiodes"
Nakamura, Takuma, Dahyeon Lee, Jason Horng, John D. Teufel e Franklyn Quinlan. "Low noise microwave generation for quantum information systems via cryogenic extended-InGaAs photodiodes". In CLEO: Science and Innovations, STu4I.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu4i.3.
Texto completo da fonte"InGaAs Photodiodes and Photoreceivers". In 2004 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2004. http://dx.doi.org/10.1109/mwp.2004.1396909.
Texto completo da fonteAchouche, M., G. Glastre, C. Caillaud, M. Lahrichi e D. Carpentier. "InGaAs high speed communication photodiodes". In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society (LEO). IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343096.
Texto completo da fonteRogalski, Antoni. "Performance limitations of InGaAs photodiodes". In International Conference on Solid State Crystals '98, editado por Antoni Rogalski e Jaroslaw Rutkowski. SPIE, 1999. http://dx.doi.org/10.1117/12.344747.
Texto completo da fonteWey, Y. G., K. Giboney, D. L. Crawford, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich e G. Y. Robinson. "Ultrafast Graded Double Heterostructure p-i-n Photodiode". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.thc3.
Texto completo da fonteDoldissen, W., R. J. Deri, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreadakis, Y. Silberberg e M. A. Koza. "Efficient vertical coupling of photodiodes to InGaAsP rib waveguides". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.thf7.
Texto completo da fonteSong, Bowen, Bei Shi, Si Zhu, Simone Šuran Brunelli e Jonathan Klamkin. "InGaAs Photodiodes on Silicon by Heteroepitaxy". In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.w3f.4.
Texto completo da fontePauchard, Alexandre, Phil Mages, Yimin Kang, Martin Bitter, Z. Pan, D. Sengupta, Steve Hummel, Yu-Hwa Lo e Paul K. L. Yu. "Wafer-bonded InGaAs/silicon avalanche photodiodes". In Symposium on Integrated Optoelectronic Devices, editado por Gail J. Brown e Manijeh Razeghi. SPIE, 2002. http://dx.doi.org/10.1117/12.467674.
Texto completo da fonteCampbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He e Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.
Texto completo da fonteBowers, J. E., C. A. Burrus e R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.tha3.
Texto completo da fonteRelatórios de organizações sobre o assunto "InGaAs photodiodes"
Tabor, Steven. Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.6644.
Texto completo da fonte