Literatura científica selecionada sobre o tema "Information storage"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Information storage".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Information storage"
BEAM, C. A. "Information Storage". Science 228, n.º 4703 (31 de maio de 1985): 1040. http://dx.doi.org/10.1126/science.3992244.
Texto completo da fonteHeber, Joerg. "Information storage". Nature Materials 6, n.º 11 (novembro de 2007): 807. http://dx.doi.org/10.1038/nmat2048.
Texto completo da fonteMaddox, John. "Quantum information storage". Nature 327, n.º 6118 (maio de 1987): 97. http://dx.doi.org/10.1038/327097a0.
Texto completo da fonteVillacampa, Y., P. Sastre-Vázquez, J. A. Reyes e F. García-Alonso. "INFORMATION STORAGE SYSTEM". Cybernetics and Systems 41, n.º 4 (28 de maio de 2010): 307–16. http://dx.doi.org/10.1080/01969721003778576.
Texto completo da fonteSANO, Masayuki. "Information storage media." Journal of Information Processing and Management 32, n.º 5 (1989): 415–25. http://dx.doi.org/10.1241/johokanri.32.415.
Texto completo da fonteByszewski, P., E. Kowalska, M. Popławska, M. Łuczak e Z. Klusek. "Molecules for information storage". Journal of Magnetism and Magnetic Materials 249, n.º 3 (setembro de 2002): 486–91. http://dx.doi.org/10.1016/s0304-8853(02)00475-4.
Texto completo da fonteKOSHLAND, D. E. "In Reply: Information Storage". Science 228, n.º 4703 (31 de maio de 1985): 1040. http://dx.doi.org/10.1126/science.228.4703.1040-a.
Texto completo da fonteWylie, J. J., M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote e P. K. Khosla. "Survivable information storage systems". Computer 33, n.º 8 (2000): 61–68. http://dx.doi.org/10.1109/2.863969.
Texto completo da fonteMIURA, YOSHIMASA. "Cutting edge of the Information Storage Technologies. Information Storage Technology for IT Era." Journal of the Institute of Electrical Engineers of Japan 122, n.º 4 (2002): 216–18. http://dx.doi.org/10.1541/ieejjournal.122.216.
Texto completo da fonteFukuzawa, Kenji, Mitsuo Hirata, Shigeo Nakamura e Hiroshi Tani. "MoF-2 JSME-IIP DIVISION ACADEMIC ROADMAP ON INFORMATION STORAGE". Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoF—2–1_—_MoF—2–2_. http://dx.doi.org/10.1299/jsmemipe.2015._mof-2-1_.
Texto completo da fonteTeses / dissertações sobre o assunto "Information storage"
Scoffin, Robert A. "New materials for optical information storage". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365756.
Texto completo da fonteNguyen, Hieu Duy. "It and Bit| Decoherence and Information Storage". Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3612010.
Texto completo da fonteWe studied two topics: i) how much physical resources are needed to store information and ii) decoherent histories theory applied to Grover search. Given a system consisting of d degrees of freedom each of mass m to store an amount S of information, we find that its average energy, 〈H〉, or size, 〈r2〉, can be made arbitrarily small individually, but its product 〈P〉 = 〈H〉〈 r2〉 is bounded below by (exp{S/d} − 1)2d2/m. This result is obtained in a nonrelativistic, quantum mechanical setting, and it is independent of earlier thermodynamical results such as the Bekenstein bound on the entropy of black holes.
The second topic is decoherent histories applied to the Grover search problem. The theory of decoherent histories is an attempt to derive classical physics from positing only quantum laws at the fundamental level without notions of a classical apparatus or collapse of the wave-function. Searching for a marked target in a list of N items requires Ω( N) oracle queries when using a classical computer, while a quantum computer can accomplish the same task in O([special characters omitted]) queries using Grover's quantum algorithm. We study a closed quantum system executing Grover algorithm in the framework of decoherent histories and find it to be an exactly solvable model, thus yielding an alternate derivation of Grover's famous result. We also subject the Grover-executing computer to a generic external influence without needing to know the specifics of the Hamiltonian insofar as the histories decohere. Depending on the amount of decoherence, which is captured in our model by a single parameter related to the amount of information obtained by the environment, the search time can range from quantum to classical. Thus, we identify a key effect induced by the environment that can adversely affect a quantum computer's performance and demonstrate exactly how classical computing can emerge from quantum laws.
Bejjani, Ghassan J. "Information storage and access in decisionmaking organizations". Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15142.
Texto completo da fonteMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 92-94.
by Ghassan J. Bejjani.
M.S.
Gao, Qiang 1964. "Noise reduction techniques for holographic information storage". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282620.
Texto completo da fonteFohlin, Johan. "Home Storage Manager". Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17494.
Texto completo da fonteShadrin, Alexey [Verfasser]. "Positional Information Storage in Sequence Patterns / Alexey Shadrin". Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1060368056/34.
Texto completo da fonteVarshney, Lav R. (Lav Raj). "Optimal information storage : nonsequential sources and neural channels". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37851.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
MIT Institute Archives copy: pages 101-163 bound in reverse order.
Includes bibliographical references (p. 141-163).
Information storage and retrieval systems are communication systems from the present to the future and fall naturally into the framework of information theory. The goal of information storage is to preserve as much signal fidelity under resource constraints as possible. The information storage theorem delineates average fidelity and average resource values that are achievable and those that are not. Moreover, observable properties of optimal information storage systems and the robustness of optimal systems to parameter mismatch may be determined. In this thesis, we study the physical properties of a neural information storage channel and also the fundamental bounds on the storage of sources that have nonsequential semantics. Experimental investigations have revealed that synapses in the mammalian brain possess unexpected properties. Adopting the optimization approach to biology, we cast the brain as an optimal information storage system and propose a theoretical framework that accounts for many of these physical properties. Based on previous experimental and theoretical work, we use volume as a limited resource and utilize the empirical relationship between volume anrid synaptic weight.
(cont.) Our scientific hypotheses are based on maximizing information storage capacity per unit cost. We use properties of the capacity-cost function, e-capacity cost approximations, and measure matching to develop optimization principles. We find that capacity-achieving input distributions not only explain existing experimental measurements but also make non-trivial predictions about the physical structure of the brain. Numerous information storage applications have semantics such that the order of source elements is irrelevant, so the source sequence can be treated as a multiset. We formulate fidelity criteria that consider asymptotically large multisets and give conclusive, but trivialized, results in rate distortion theory. For fidelity criteria that consider fixed-size multisets. we give some conclusive results in high-rate quantization theory, low-rate quantization. and rate distortion theory. We also provide bounds on the rate-distortion function for other nonsequential fidelity criteria problems. System resource consumption can be significantly reduced by recognizing the correct invariance properties and semantics of the information storage task at hand.
by Lav R. Varshney.
S.M.
Adar, Eytan 1975. "Hybrid-search and storage of semi-structured information". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46274.
Texto completo da fonteIncludes bibliographical references (p. 113-118).
Given today's tangle of digital information, one of the hardest tasks for computer users of information systems is finding anything in the mess. For a number of well documented reasons including the amazing growth in the Internet's popularity and the drop in the cost of storage, the amount of information on the net as well as on a user's local computer, has increased dramatically in recent years. Although this readily available information should be extremely beneficial for computer users, paradoxically it is now much harder to find anything. Many different solutions have been proposed to the general information seeking task of users, but few if any have addressed the needs of individuals or have leveraged the benefit of single-user interaction. The Haystack project is an attempt to answer the needs of the individual user. Once the user's information is represented in Haystack, the types of questions users may ask are highly varied. In this thesis we will propose a means of representing information in a robust framework within Haystack. Once the information is represented we describe a mechanism by which the diverse questions of the individual can be answered. This novel method functions by using a combination of existing information systems. We will call this combined system a hybrid-search system.
by Eytan Adar.
M.Eng.
Johnston, Reece G. "Secure storage via information dispersal across network overlays". Thesis, The University of Alabama in Huntsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10157562.
Texto completo da fonteIn this paper, we describe a secure distributed storage model to be used especially with untrusted devices, most notably cloud storage devices. The model does so through a peer-to-peer overlay and storage protocol designed to run on existing networked systems. We utilize a structured overlay that is organized in a layered, hierarchical manner based on the underlying network structure. These layers are used as storage sites for pieces of data near the layer at which that data is needed. This data is generated and distributed via a technique called an information dispersal algorithm (IDA) which utilizes an erasure code such as Cauchy Reed-Solomon (RS). Through the use of this IDA, the data pieces are organized across neighboring layers to maximize locality and prevent a compromise within one layer from compromising the data of that layer. Speci?cally, for a single datum to become compromised, a minimum of two layers would have to become compromised. As a result, security, survivability, and availability of the data is improved compared to other distributed storage systems. We present signi?cant background in this area followed by an analysis of similar distributed storage systems. Then, an overview of our proposed model is given along with an in-depth analysis, including both experimental results and theoretical analysis. The recorded overhead (encoding/decoding times and associated data sizes) shows that such a scheme can be utilized with little increase in overall latency. Making the proposed model an ideal choice for any distributed storage needs.
Shrestha, Tej Bahadur. "Heterocycles for life-sciences applications and information storage". Diss., Kansas State University, 2010. http://hdl.handle.net/2097/13540.
Texto completo da fonteDepartment of Chemistry
Stefan H. Bossmann
The photochromic spirodihydroindolizine/betaine (DHI/B) system has been reinvestigated applying picosecond, microsecond, stationary absorption measurements, and NMR-kinetics. The first surprise was that the electronic structure of the betaines is quite different than commonly assumed. The photochemical ring-opening of DHIs to betaines is a conrotatory 1,5 electrocyclic reaction, as picosecond absorption spectroscopy confirms. The (disrotatory) thermal ring-closing occurs from the cisoid betaine. The lifetime of the transoid betaine is 60 s at 300 K, whereas the lifetime of the cisoid isomer is of the order of 250 microseconds. According to these results, the electrocyclic back reaction of the betaines to the DHI is NOT rate determining, as previously thought, but the cisoid-transoid-isomerization of the betaine. Although the presence of a second nitrogen atom increases the photostability of the spirodihydroindolizine-pyridazine/betaine-system remarkably, the photochemical reaction mechanism appears to be exactly the same for spirodihydroindolizine-pyridazine/betaine-system. A nondestructive photoswitch or an information recording systems has been explored using styryl-quinolyldihydroindolizines. Both isomers DHI and betaine are fluorescent. When the blue betaine is stabilized in a thin polymethyl methacrylate (PMMA) matrix, it is stable for several hours even in room temperature and very stable at 77K. Although irradiation of visible light = 532 nm allows the photo-induced reaction of the Betaine back to the DHI, a nondestructive read-out can be performed at λ = 645 nm upon excitation with λ = 580 nm. Image recording (write) and read-out, as well as information storage (at 77K) have been demonstrated. Charged and maleimide-functionalized DHI/B systems have beed synthesized for use as photochemical gates of the mycobacterial channel porin MspA. Positively charged and maleimide functionalized DHI groups that were attached to the DHI/B-system permit the binding of the photoswitch to selective positions in the channel proteins due to the presence of a cysteine moiety. An inexpensive new method for the large scale synthesis of coelenterazine is developed. A modified Negishi coupling reaction is used to make pyrazine intermediates from aminopyrazine as an economical starting material. This method permits the use of up to 1g coelenterazine per kg body weight and day, which turns the renilla transfected stem cells into powerful light sources.
Livros sobre o assunto "Information storage"
Große, Cornelia S., e Rolf Drechsler, eds. Information Storage. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-19262-4.
Texto completo da fonteDudman, K. E. Data, information & information storage. London: University of London, External Advisory Service, 1992.
Encontre o texto completo da fonteHammersley, P. Data, information & information storage. 2a ed. London: University of London, External Publications, 1995.
Encontre o texto completo da fonteKorfhage, Robert R. Information storage and retrieval. New York: Wiley Computer Pub., 1997.
Encontre o texto completo da fonteM, Taratorin A., ed. Magnetic information storage technology. San Diego: Academic Press, 1999.
Encontre o texto completo da fonteMittal, K. L. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989.
Encontre o texto completo da fonteChung, Soon M., ed. Multimedia Information Storage and Management. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1431-8.
Texto completo da fonteMittal, K. L., ed. Polymers in Information Storage Technology. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0843-0.
Texto completo da fonteKowalski, Gerald J., e Mark T. Maybury. Information Storage and Retrieval Systems. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b116174.
Texto completo da fonte1945-, Mittal K. L., ed. Polymers in information storage technology. New York: Plenum Press, 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Information storage"
Lizier, Joseph T. "Information Storage". In The Local Information Dynamics of Distributed Computation in Complex Systems, 53–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32952-4_3.
Texto completo da fontePartridge, L. Donald, e Lloyd D. Partridge. "Information Storage". In Nervous System Actions and Interactions, 175–93. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0425-2_9.
Texto completo da fonteFahle, Manfred. "Information Processing and Storage in the Brain". In Information Storage, 1–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_1.
Texto completo da fonteKozlov, Michail D. "Verbal Short-Term Memory: Insights in Human Information Storage". In Information Storage, 41–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_2.
Texto completo da fonteShirinzadeh, Saeideh, e Rolf Drechsler. "In-Memory Computing: The Integration of Storage and Processing". In Information Storage, 79–110. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_3.
Texto completo da fonteFroehlich, Saman, Daniel Große e Rolf Drechsler. "Approximate Memory: Data Storage in the Context of Approximate Computing". In Information Storage, 111–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_4.
Texto completo da fonteBeßler, Daniel, Asil Kaan Bozcuoğlu e Michael Beetz. "Information System for Storage, Management, and Usage for Embodied Intelligent Systems". In Information Storage, 135–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_5.
Texto completo da fonteBöhling, Rieke, e Christine Lohmeier. "On “Storing Information” in Families: (Mediated) Family Memory at the Intersection of Individual and Collective Remembering". In Information Storage, 161–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_6.
Texto completo da fonteHagedoorn, Berber. "Cultural Memory and Screen Culture". In Information Storage, 179–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_7.
Texto completo da fonteKramp, Leif. "The Complicated Preservation of the Television Heritage in a Digital Era". In Information Storage, 199–238. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19262-4_8.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Information storage"
Lee, Kyung-Geun, In-Oh Hwang, Chang-Min Park, Yoon-Gi Kim, In-Sik Park e Dong-Ho Shin. "Effect of first information layer on second information layer in dual-layer disc". In Optical Data Storage, editado por Terril Hurst e Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453413.
Texto completo da fonteHayami, Atsushi A., Tsuyoshi Oki, Makoto M. Itonaga e Ken Miyazaki. "Extra information recording on D8-15 modulation". In Optical Data Storage, editado por Terril Hurst e Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453370.
Texto completo da fonteMansuripur, M., P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar e N. Peyghambarian. "Information Storage and Retrieval using Macromolecules as Storage Media". In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tuc2.
Texto completo da fonteMansuripur, Masud, Pramod K. Khulbe, Stephen M. Kuebler, Joseph W. Perry, M. S. Giridhar, James K. Erwin, Kibyung Seong, Seth R. Marder e Nasser Peyghambarian. "Information storage and retrieval using macromolecules as storage media". In Optical Data Storage 2003, editado por Michael O'Neill e Naoyasu Miyagawa. SPIE, 2003. http://dx.doi.org/10.1117/12.533057.
Texto completo da fonteThomas, Fred C. "Exploring optical multilevel information storage using subwavelength-sized media structures". In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tue43p.
Texto completo da fonteLai, Ching-Ming. "Study and realization of a non-contact power supply system with fast information transmission capability". In Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982943.
Texto completo da fonteAbbasi, Hasan, Greg Eisenhauer, Scott Klasky, Karsten Schwan e Matthew Wolf. "Extracting information ASAP!" In 2010 5th Petascale Data Storage Workshop (PDSW). IEEE, 2010. http://dx.doi.org/10.1109/pdsw.2010.5668088.
Texto completo da fonteMansuripur, Masud. "Information Storage and Retrieval Using Macromolecules as Storage Media". In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87089.
Texto completo da fonteKim, Dong-Oh, Myung-Hoon Cha e Hong-Yeon Kim. "Remote Direct Storage Management for Exa-Scale Storage". In Future Generation Information Technology 2016. Science & Engineering Research Support soCiety, 2016. http://dx.doi.org/10.14257/astl.2016.139.04.
Texto completo da fontePitsyuga, Vitaly V., Michael Y. Kolesnikov e Igor V. Kosyak. "Protection method for an optical information carrier". In International Conference on Optical Storage, editado por Viacheslav V. Petrov e Sergei V. Svechnikov. SPIE, 1997. http://dx.doi.org/10.1117/12.267711.
Texto completo da fonteRelatórios de organizações sobre o assunto "Information storage"
Seeman, Nadrian, W. Morrison, E. Monteith, D. Gallaro e J. Filsinger. DNA Nanotechnology for Massive Information Storage. Fort Belvoir, VA: Defense Technical Information Center, julho de 2001. http://dx.doi.org/10.21236/ada398265.
Texto completo da fonteJones, Robert R. Information Storage and Processing in Rydberg Atoms. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2008. http://dx.doi.org/10.21236/ada496451.
Texto completo da fonteHusa, E. I., R. E. Raymond, R. K. Welty, S. M. Griffith, B. M. Hanlon, R. R. Rios e N. J. Vermeulen. Hanford Site Waste Storage Tank Information Notebook. Office of Scientific and Technical Information (OSTI), julho de 1993. http://dx.doi.org/10.2172/10182105.
Texto completo da fonteRaddatz, M. G., e M. D. Waters. Information handbook on independent spent fuel storage installations. Office of Scientific and Technical Information (OSTI), dezembro de 1996. http://dx.doi.org/10.2172/419087.
Texto completo da fonteLawandy, Nabil M. Novel Composite Materials for Nonlinear Optics and Information Storage. Fort Belvoir, VA: Defense Technical Information Center, abril de 1997. http://dx.doi.org/10.21236/ada325676.
Texto completo da fonteMcCall, R. P., J. M. Ginder, J. M. Leng, K. A. Coplin, H. J. Ye, A. J. Epstein, G. E. Asturias et al. Photoinduced Absorption and Erasable Optical Information Storage in Polyanilines. Fort Belvoir, VA: Defense Technical Information Center, março de 1991. http://dx.doi.org/10.21236/ada234108.
Texto completo da fonteHuber, George P. A Study of Organizational Information Search, Acquisition, Storage and Retrieval. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1986. http://dx.doi.org/10.21236/ada172063.
Texto completo da fonteDiCerbo, J. Excluded USTs: RCRA Subtitle 1, Underground Storage Tanks. RCRA Information Brief. Office of Scientific and Technical Information (OSTI), maio de 1993. http://dx.doi.org/10.2172/10143292.
Texto completo da fonteKrishnan, Kannan M. CRADA Final Report: Tailored Microstructures in Advanced Materials for Information Storage. Office of Scientific and Technical Information (OSTI), fevereiro de 2002. http://dx.doi.org/10.2172/1157020.
Texto completo da fonteKryder, Mark H., David Thuel, Chris Bowman e Ching-Hsing Huang. Fabrication of Material and Devices for Very High Density Information Storage. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1986. http://dx.doi.org/10.21236/ada174548.
Texto completo da fonte