Siga este link para ver outros tipos de publicações sobre o tema: Infinte products.

Artigos de revistas sobre o tema "Infinte products"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Infinte products".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

ELDAR, YONINA C., e TOBIAS WERTHER. "GENERAL FRAMEWORK FOR CONSISTENT SAMPLING IN HILBERT SPACES". International Journal of Wavelets, Multiresolution and Information Processing 03, n.º 03 (setembro de 2005): 347–59. http://dx.doi.org/10.1142/s0219691305000890.

Texto completo da fonte
Resumo:
We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinte-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and the corresponding positive operators for which this geometrical interpretation applies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jeong, JA A., Kazunori Kodaka e Hiroyuki Osaka. "Purely Infinite Simple C*-Crossed Products II". Canadian Mathematical Bulletin 39, n.º 2 (1 de junho de 1996): 203–10. http://dx.doi.org/10.4153/cmb-1996-025-2.

Texto completo da fonte
Resumo:
AbstractWe study the pure infiniteness of C* -crossed products by endomorphisms and automorphisms. Let A be a purely infinité simple unital C*-algebra. At first we show that a crossed product A × p N by a corner endomorphism p is purely infinite if it is simple. From this observation we prove that any simple C*-crossed products A ×αZ by an automorphism α is purely infinite. Combining this with the result in [Je] on pure infiniteness of crossed products by finite groups, one sees that if α is an outer action by a countable abelian group G then the simple C*-algebra A ×α G is purely infinite.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Loeb, Peter A., e David A. Ross. "Infinite products of infinite measures". Illinois Journal of Mathematics 49, n.º 1 (janeiro de 2005): 153–58. http://dx.doi.org/10.1215/ijm/1258138311.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Meier, John. "The topology of graph products of groups". Proceedings of the Edinburgh Mathematical Society 37, n.º 3 (outubro de 1994): 539–44. http://dx.doi.org/10.1017/s001309150001899x.

Texto completo da fonte
Resumo:
Given a finite (connected) simplicial graph with groups assigned to the vertices, the graph product of the vertex groups is the free product modulo the relation that adjacent groups commute. The graph product of finitely presented infinite groups is both semistable at infinity and quasi-simply filtrated. Explicit bounds for the isoperimetric inequality and isodiametric inequality for graph products is given, based on isoperimetric and isodiametric inequalities for the vertex groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Magnot, Jean-Pierre. "The Mean Value for Infinite Volume Measures, Infinite Products, and Heuristic Infinite Dimensional Lebesgue Measures". Journal of Mathematics 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9853672.

Texto completo da fonte
Resumo:
One of the goals of this article is to describe a setting adapted to the description of means (normalized integrals or invariant means) on an infinite product of measured spaces with infinite measure and of the concentration property on metric measured spaces, inspired from classical examples of means. In some cases, we get a linear extension of the limit at infinity. Then, the mean value on an infinite product is defined, first for cylindrical functions and secondly taking the uniform limit. Finally, the mean value for the heuristic Lebesgue measure on a separable infinite dimensional topological vector space (e.g., on a Hilbert space) is defined. This last object, which is not the classical infinite dimensional Lebesgue measure but its “normalized” version, is shown to be invariant under translation, scaling, and restriction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Brown, K. A. "INFINITE CROSSED PRODUCTS". Bulletin of the London Mathematical Society 22, n.º 4 (julho de 1990): 394–96. http://dx.doi.org/10.1112/blms/22.4.394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Meir, Nadav. "Infinite lexicographic products". Annals of Pure and Applied Logic 173, n.º 1 (janeiro de 2022): 102991. http://dx.doi.org/10.1016/j.apal.2021.102991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Izuchi, Keiji. "Weak infinite products of Blaschke products". Proceedings of the American Mathematical Society 129, n.º 12 (16 de abril de 2001): 3611–18. http://dx.doi.org/10.1090/s0002-9939-01-05957-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Muthuvel, Kandasamy. "Infinite products of alephs". Fundamenta Mathematicae 131, n.º 3 (1988): 255–56. http://dx.doi.org/10.4064/fm-131-3-255-256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

HANCL, JAROSLAV, e ONDREJ KOLOUCH. "Irrationality of infinite products". Publicationes Mathematicae Debrecen 83, n.º 4 (1 de dezembro de 2013): 667–81. http://dx.doi.org/10.5486/pmd.2013.5676.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Desbrow, Darrell. "96.15 Three infinite products". Mathematical Gazette 96, n.º 535 (março de 2012): 130–31. http://dx.doi.org/10.1017/s0025557200004150.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Short, L. "Some further infinite products". International Journal of Mathematical Education in Science and Technology 24, n.º 1 (janeiro de 1993): 91–99. http://dx.doi.org/10.1080/0020739930240112.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Dehornoy, Patrick. "Infinite products in monoids". Semigroup Forum 34, n.º 1 (dezembro de 1986): 21–68. http://dx.doi.org/10.1007/bf02573152.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Toyoizumi, Masao. "On certain infinite products III". Acta Arithmetica 51, n.º 3 (1988): 221–31. http://dx.doi.org/10.4064/aa-51-3-221-231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Trench, William F. "Conditional Convergence of Infinite Products". American Mathematical Monthly 106, n.º 7 (agosto de 1999): 646. http://dx.doi.org/10.2307/2589494.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Tachiya, Yohei. "Transcendence of certain infinite products". Journal of Number Theory 125, n.º 1 (julho de 2007): 182–200. http://dx.doi.org/10.1016/j.jnt.2006.11.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Stephens, E. "79.52 Slowly Convergent Infinite Products". Mathematical Gazette 79, n.º 486 (novembro de 1995): 561. http://dx.doi.org/10.2307/3618092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

DUKE, WILLIAM, e HA NAM NGUYEN. "INFINITE PRODUCTS OF CYCLOTOMIC POLYNOMIALS". Bulletin of the Australian Mathematical Society 91, n.º 3 (26 de fevereiro de 2015): 400–411. http://dx.doi.org/10.1017/s0004972715000039.

Texto completo da fonte
Resumo:
We study analytic properties of certain infinite products of cyclotomic polynomials that generalise some products introduced by Mahler. We characterise those that have the unit circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic behaviour near roots of unity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Trench, William F. "Conditional Convergence of Infinite Products". American Mathematical Monthly 106, n.º 7 (agosto de 1999): 646–51. http://dx.doi.org/10.1080/00029890.1999.12005098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Montgomery, Susan. "Book Review: Infinite crossed products". Bulletin of the American Mathematical Society 24, n.º 2 (1 de abril de 1991): 391–403. http://dx.doi.org/10.1090/s0273-0979-1991-16044-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Campbell, Geoffrey B. "Infinite products over hyperpyramid lattices". International Journal of Mathematics and Mathematical Sciences 23, n.º 4 (2000): 271–77. http://dx.doi.org/10.1155/s0161171200000764.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Budzyńska, Monika, e Simeon Reich. "Infinite products of holomorphic mappings". Abstract and Applied Analysis 2005, n.º 4 (2005): 327–41. http://dx.doi.org/10.1155/aaa.2005.327.

Texto completo da fonte
Resumo:
LetXbe a complex Banach space,𝒩a norming set forX, andD⊂Xa bounded, closed, and convex domain such that its norm closureD¯is compact inσ(X,𝒩). Let∅≠C⊂Dlie strictly insideD. We study convergence properties of infinite products of those self-mappings ofCwhich can be extended to holomorphic self-mappings ofD. Endowing the space of sequences of such mappings with an appropriate metric, we show that the subset consisting of all the sequences with divergent infinite products isσ-porous.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Rohm, Dale M. "Products of infinite-dimensional spaces". Proceedings of the American Mathematical Society 108, n.º 4 (1 de abril de 1990): 1019. http://dx.doi.org/10.1090/s0002-9939-1990-0946625-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ibrahim, Adel K., e Medhat A. Rakha. "Numerical computations of infinite products". Applied Mathematics and Computation 161, n.º 1 (fevereiro de 2005): 271–83. http://dx.doi.org/10.1016/j.amc.2003.12.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Knopfmacher, Arnold, e John Knopfmacher. "Infinite products for power series". Journal of Approximation Theory 59, n.º 3 (dezembro de 1989): 276–81. http://dx.doi.org/10.1016/0021-9045(89)90091-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hua, Fan Ai. "Multifractal analysis of infinite products". Journal of Statistical Physics 86, n.º 5-6 (março de 1997): 1313–36. http://dx.doi.org/10.1007/bf02183625.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Miranda, Enrique, e Marco Zaffalon. "Independent products in infinite spaces". Journal of Mathematical Analysis and Applications 425, n.º 1 (maio de 2015): 460–88. http://dx.doi.org/10.1016/j.jmaa.2014.12.049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Giordano, Thierry, e Adam Sierakowski. "Purely infinite partial crossed products". Journal of Functional Analysis 266, n.º 9 (maio de 2014): 5733–64. http://dx.doi.org/10.1016/j.jfa.2014.02.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zucker, I. J. "A systematic way of converting infinite series into infinite products". Journal of Physics A: Mathematical and General 20, n.º 1 (11 de janeiro de 1987): L13—L17. http://dx.doi.org/10.1088/0305-4470/20/1/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Dydak, Jerzy. "Extension theory of infinite symmetric products". Fundamenta Mathematicae 182, n.º 1 (2004): 53–77. http://dx.doi.org/10.4064/fm182-1-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Campbell, Geoffrey B. "Infinite products over visible lattice points". International Journal of Mathematics and Mathematical Sciences 17, n.º 4 (1994): 637–54. http://dx.doi.org/10.1155/s0161171294000918.

Texto completo da fonte
Resumo:
About fifty new multivariate combinatorial identities are given, connected with partition theory, prime products, and Dirichlet series. Connections to Lattice Sums in Chemistry and Physics are alluded to also.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Alaca, Ayşe, Şaban Alaca e Kenneth S. Williams. "Some Infinite Products of Ramanujan Type". Canadian Mathematical Bulletin 52, n.º 4 (1 de dezembro de 2009): 481–92. http://dx.doi.org/10.4153/cmb-2009-050-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Jeong, Ja A. "Purely Infinite Simple C ∗ -Crossed Products". Proceedings of the American Mathematical Society 123, n.º 10 (outubro de 1995): 3075. http://dx.doi.org/10.2307/2160662.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Toyoizumi, Masao. "A note on certain infinite products". Proceedings of the Japan Academy, Series A, Mathematical Sciences 68, n.º 10 (1992): 345–47. http://dx.doi.org/10.3792/pjaa.68.345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Krupski, Mikołaj. "On functional tightness of infinite products". Topology and its Applications 229 (setembro de 2017): 141–47. http://dx.doi.org/10.1016/j.topol.2017.07.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Amou, Masaaki, e Keijo Väänänen. "Arithmetical properties of certain infinite products". Journal of Number Theory 153 (agosto de 2015): 283–303. http://dx.doi.org/10.1016/j.jnt.2015.01.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Borges, Carlos R. "The sup metric on infinite products". Bulletin of the Australian Mathematical Society 44, n.º 3 (dezembro de 1991): 461–66. http://dx.doi.org/10.1017/s0004972700029956.

Texto completo da fonte
Resumo:
We study the properties of the sup metric on infinite products Z = X.(If d is a bounded metric on X then ρ, defined by ρ((xα), (yα)) = , is the sup metric on Z.) In particular, we prove that if X is an AR(metric) or a topological group then so is Z.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Hanna, Yousry S., e Samya F. Ragheb. "On the Infinite Products of Matrices". Advances in Pure Mathematics 02, n.º 05 (2012): 349–53. http://dx.doi.org/10.4236/apm.2012.25050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Wermuth, Edgar M. E. "Some Elementary Properties of Infinite Products". American Mathematical Monthly 99, n.º 6 (junho de 1992): 530. http://dx.doi.org/10.2307/2324060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Power, S. C. "Infinite Lexicographic Products of Triangular Algebras". Bulletin of the London Mathematical Society 27, n.º 3 (maio de 1995): 273–77. http://dx.doi.org/10.1112/blms/27.3.273.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Allouche, Jean-Paul, e Henri Cohen. "Dirichlet Series and Curious infinite Products". Bulletin of the London Mathematical Society 17, n.º 6 (novembro de 1985): 531–38. http://dx.doi.org/10.1112/blms/17.6.531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wermuth, Edgar M. E. "Some Elementary Properties of Infinite Products". American Mathematical Monthly 99, n.º 6 (junho de 1992): 530–37. http://dx.doi.org/10.1080/00029890.1992.11995887.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Trench, William F. "Invertibly convergent infinite products of matrices". Journal of Computational and Applied Mathematics 101, n.º 1-2 (janeiro de 1999): 255–63. http://dx.doi.org/10.1016/s0377-0427(98)00191-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kimura, Shun-ichi, e Angelo Vistoli. "Chow rings of infinite symmetric products". Duke Mathematical Journal 85, n.º 2 (novembro de 1996): 411–30. http://dx.doi.org/10.1215/s0012-7094-96-08517-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Chmielewska, Katarzyna, e Aleksander Maliszewski. "Infinite products of Borel measurable functions". Topology and its Applications 155, n.º 17-18 (outubro de 2008): 1996–2000. http://dx.doi.org/10.1016/j.topol.2007.04.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Chmielewska, Katarzyna, e Aleksander Maliszewski. "Infinite products of quasi-continuous functions". Topology and its Applications 156, n.º 18 (dezembro de 2009): 3101–8. http://dx.doi.org/10.1016/j.topol.2009.03.048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Guu, Sy-Ming, Yung-Yih Lur e Chin-Tzong Pang. "On Infinite Products of Fuzzy Matrices". SIAM Journal on Matrix Analysis and Applications 22, n.º 4 (janeiro de 2001): 1190–203. http://dx.doi.org/10.1137/s0895479800366021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Boyer, Robert P., e Yun S. Yoo. "Unitary representations of infinite wreath products". Annals of Functional Analysis 10, n.º 1 (fevereiro de 2019): 97–105. http://dx.doi.org/10.1215/20088752-2018-0011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Pustylnik, Evgeniy, Simeon Reich e Alexander J. Zaslavski. "Inexact Infinite Products of Nonexpansive Mappings". Numerical Functional Analysis and Optimization 30, n.º 5-6 (30 de junho de 2009): 632–45. http://dx.doi.org/10.1080/01630560902987998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Wang, Xingping, e Zhaolin Cheng. "Infinite products of uniformly paracontracting matrices". Linear and Multilinear Algebra 64, n.º 5 (8 de julho de 2015): 856–62. http://dx.doi.org/10.1080/03081087.2015.1063577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia