Literatura científica selecionada sobre o tema "Infinitesimal generator of a Lie group"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Infinitesimal generator of a Lie group".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Infinitesimal generator of a Lie group"
Li, Fu-zhi, Jia-li Yu, Yang-rong Li e Gan-shan Yang. "Lie Group Solutions of Magnetohydrodynamics Equations and Their Well-Posedness". Abstract and Applied Analysis 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/8183079.
Texto completo da fonteTryhuk, V., V. Chrastinová e O. Dlouhý. "The Lie Group in Infinite Dimension". Abstract and Applied Analysis 2011 (2011): 1–35. http://dx.doi.org/10.1155/2011/919538.
Texto completo da fonteAlfaro, Ricardo, e Jim Schaeferle. "Coefficients of prolongations for symmetries of ODEs". International Journal of Mathematics and Mathematical Sciences 2004, n.º 51 (2004): 2741–53. http://dx.doi.org/10.1155/s016117120430904x.
Texto completo da fonteSchürmann, Michael, e Michael Skeide. "Infinitesimal Generators on the Quantum Group SUq(2)". Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, n.º 04 (outubro de 1998): 573–98. http://dx.doi.org/10.1142/s0219025798000314.
Texto completo da fonteCai, J. L., e F. X. Mei. "Conformal Invariance and Conserved Quantity of the Higher-Order Holonomic Systems by Lie Point Transformation". Journal of Mechanics 28, n.º 3 (9 de agosto de 2012): 589–96. http://dx.doi.org/10.1017/jmech.2012.67.
Texto completo da fonteGaur, Manoj, e K. Singh. "Symmetry Classification and Exact Solutions of a Variable Coefficient Space-Time Fractional Potential Burgers’ Equation". International Journal of Differential Equations 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4270724.
Texto completo da fonteNdogmo, J. C. "Some Results on Equivalence Groups". Journal of Applied Mathematics 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/484805.
Texto completo da fonteChepngetich, Winny. "The lie symmetry analysis of third order Korteweg-de Vries equation". Journal of Physical and Applied Sciences (JPAS) 1, n.º 1 (1 de novembro de 2022): 38–43. http://dx.doi.org/10.51317/jpas.v1i1.299.
Texto completo da fonteRay, S. Saha. "Painlevé analysis, group invariant analysis, similarity reduction, exact solutions, and conservation laws of Mikhailov–Novikov–Wang equation". International Journal of Geometric Methods in Modern Physics 18, n.º 06 (26 de março de 2021): 2150094. http://dx.doi.org/10.1142/s0219887821500948.
Texto completo da fonteTam, Honwah, Yufeng Zhang e Xiangzhi Zhang. "New Applications of a Kind of Infinitesimal-Operator Lie Algebra". Advances in Mathematical Physics 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/7639013.
Texto completo da fonteTeses / dissertações sobre o assunto "Infinitesimal generator of a Lie group"
Ouknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Texto completo da fonteThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Adamo, Maria Stella. "Representable functionals and derivations on Banach quasi *-algebras". Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4117.
Texto completo da fonteFredericks, E. "Conservation laws and their associated symmetries for stochastic differential equations". Thesis, 2009. http://hdl.handle.net/10539/6980.
Texto completo da fonteCapítulos de livros sobre o assunto "Infinitesimal generator of a Lie group"
Iliopoulos, J., e T. N. Tomaras. "Elements of Classical Field Theory". In Elementary Particle Physics, 24–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0003.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Infinitesimal generator of a Lie group"
Pokas, S., e I. Bilokobylskyi. "Lie group of the second degree infinitesimal conformal transformations in a symmetric Riemannian space of the first class". In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’21. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100808.
Texto completo da fonteRico, J. M., J. J. Cervantes, A. Tadeo, J. Gallardo, L. D. Aguilera e C. R. Diez. "Infinitesimal Kinematics Methods in the Mobility Determination of Kinematic Chains". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86489.
Texto completo da fonteLerbet, Jean. "Stability of Singularities of a Kinematical Chain". In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84126.
Texto completo da fonteZhang, Liping, e Jian S. Dai. "Genome Reconfiguration of Metamorphic Manipulators Based on Lie Group Theory". In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49906.
Texto completo da fonteNorbach, Alexandra, Kotryna Bedrovaite Fjetland, Gina Vikum Hestetun e Thomas J. Impelluso. "Gyroscopic Wave Energy Generator for Fish Farms and Rigs". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86188.
Texto completo da fonteLee, Chung-Ching, e Jacques M. Hervé. "New Schoenflies-Motion Manipulator Implementing Isosceles Triangle and Delassus Parallelogram". In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20343.
Texto completo da fonteLee, Chung-Ching, e Jacques M. Hervé. "Homokinetic Shaft-Coupling Mechanisms via Double Schoenflies-Motion Generators". In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34517.
Texto completo da fonteChangizi, M. Amin, Ali Abolfathi e Ion Stiharu. "MEMS Wind Speed Sensor: Large Deflection of Curved Micro-Cantilever Beam Under Uniform Horizontal Force". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50560.
Texto completo da fonteKorsvik, Håkon B., Even S. Rognsvåg, Tore H. Tomren, Joakim F. Nyland e Thomas J. Impelluso. "Dual Gyroscope Wave Energy Converter". In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10266.
Texto completo da fonteTaves, Jay, Alexandra Kissel e Dan Negrut. "Dwelling on the Connection Between SO(3) and Rotation Matrices in Rigid Multibody Dynamics – Part 1: Description of an Index-3 DAE Solution Approach". In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-72057.
Texto completo da fonte