Literatura científica selecionada sobre o tema "Inference"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Inference".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Inference"
Barreyro, Juan Pablo, Jazmín Cevasco, Débora Burín e Carlos Molinari Marotto. "Working Memory Capacity and Individual Differences in the Making of Reinstatement and Elaborative Inferences". Spanish journal of psychology 15, n.º 2 (julho de 2012): 471–79. http://dx.doi.org/10.5209/rev_sjop.2012.v15.n2.38857.
Texto completo da fonteWang, Yingxu. "Inference Algebra (IA)". International Journal of Cognitive Informatics and Natural Intelligence 6, n.º 1 (janeiro de 2012): 21–47. http://dx.doi.org/10.4018/jcini.2012010102.
Texto completo da fonteWang, Yingxu. "Inference Algebra (IA)". International Journal of Cognitive Informatics and Natural Intelligence 5, n.º 4 (outubro de 2011): 61–82. http://dx.doi.org/10.4018/jcini.2011100105.
Texto completo da fonteWilhelm, Marco, e Gabriele Kern-Isberner. "Focused Inference and System P". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 7 (18 de maio de 2021): 6522–29. http://dx.doi.org/10.1609/aaai.v35i7.16808.
Texto completo da fonteStarns, Jeffrey J., Andrea M. Cataldo, Caren M. Rotello, Jeffrey Annis, Andrew Aschenbrenner, Arndt Bröder, Gregory Cox et al. "Assessing Theoretical Conclusions With Blinded Inference to Investigate a Potential Inference Crisis". Advances in Methods and Practices in Psychological Science 2, n.º 4 (17 de setembro de 2019): 335–49. http://dx.doi.org/10.1177/2515245919869583.
Texto completo da fonteGeorge, Marie St, Suzanne Mannes e James E. Hoffman. "Individual Differences in Inference Generation: An ERP Analysis". Journal of Cognitive Neuroscience 9, n.º 6 (novembro de 1997): 776–87. http://dx.doi.org/10.1162/jocn.1997.9.6.776.
Texto completo da fonteMurza, Kimberly A., Chad Nye, Jamie B. Schwartz, Barbara J. Ehren e Debbie L. Hahs-Vaughn. "A Randomized Controlled Trial of an Inference Generation Strategy Intervention for Adults With High-Functioning Autism Spectrum Disorder". American Journal of Speech-Language Pathology 23, n.º 3 (agosto de 2014): 461–73. http://dx.doi.org/10.1044/2014_ajslp-13-0012.
Texto completo da fonteBahri, Toufik, e Abdulqader A. Al Hussain. "Question Type and Order of Inference in Inferential Processes during Reading Comprehension". Perceptual and Motor Skills 85, n.º 2 (outubro de 1997): 655–64. http://dx.doi.org/10.2466/pms.1997.85.2.655.
Texto completo da fonteBar-Haim, Roy, Ido Dagan e Jonathan Berant. "Knowledge-Based Textual Inference via Parse-Tree Transformations". Journal of Artificial Intelligence Research 54 (9 de setembro de 2015): 1–57. http://dx.doi.org/10.1613/jair.4584.
Texto completo da fonteLandis, Christopher B., e Joshua A. Kroll. "Mitigating Inference Risks with the NIST Privacy Framework". Proceedings on Privacy Enhancing Technologies 2024, n.º 1 (janeiro de 2024): 217–31. http://dx.doi.org/10.56553/popets-2024-0013.
Texto completo da fonteTeses / dissertações sobre o assunto "Inference"
Calabrese, Chris M. Eng Massachusetts Institute of Technology. "Distributed inference : combining variational inference with distributed computing". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85407.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 95-97).
The study of inference techniques and their use for solving complicated models has taken off in recent years, but as the models we attempt to solve become more complex, there is a worry that our inference techniques will be unable to produce results. Many problems are difficult to solve using current approaches because it takes too long for our implementations to converge on useful values. While coming up with more efficient inference algorithms may be the answer, we believe that an alternative approach to solving this complicated problem involves leveraging the computation power of multiple processors or machines with existing inference algorithms. This thesis describes the design and implementation of such a system by combining a variational inference implementation (Variational Message Passing) with a high-level distributed framework (Graphlab) and demonstrates that inference is performed faster on a few large graphical models when using this system.
by Chris Calabrese.
M. Eng.
Miller, J. Glenn (James). "Predictive inference". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/24294.
Texto completo da fonteCleave, Nancy. "Ecological inference". Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304826.
Texto completo da fonteHenke, Joseph D. "Visualizing inference". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91826.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 75-76).
Common Sense Inference is an increasingly attractive technique to make computer interfaces more in touch with how human users think. However, the results of the inference process are often hard to interpret and evaluate. Visualization has been successful in many other fields of science, but to date it has not been used much for visualizing the results of inference. This thesis presents Alar, an interface which allows dynamic exploration of the results of the inference process. It enables users to detect errors in the input data and fine tune how liberal or conservative the inference should be. It accomplishes this through novel extensions to the AnalogySpace framework for inference and visualizing concepts and even assertions as nodes in a graph, clustered by their semantic relatedness. A usability study was performed and the results show users were able to successfully use Alar to determine the cause of an incorrect inference.
by Joseph D. Henke.
M. Eng.
Zhai, Yongliang. "Stochastic processes, statistical inference and efficient algorithms for phylogenetic inference". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59095.
Texto completo da fonteScience, Faculty of
Statistics, Department of
Graduate
Wu, Jianrong. "Asymptotic likelihood inference". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq41050.pdf.
Texto completo da fonteMorris, Quaid Donald Jozef 1972. "Practical probabilistic inference". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29989.
Texto completo da fonteIncludes bibliographical references (leaves 157-163).
The design and use of expert systems for medical diagnosis remains an attractive goal. One such system, the Quick Medical Reference, Decision Theoretic (QMR-DT), is based on a Bayesian network. This very large-scale network models the appearance and manifestation of disease and has approximately 600 unobservable nodes and 4000 observable nodes that represent, respectively, the presence and measurable manifestation of disease in a patient. Exact inference of posterior distributions over the disease nodes is extremely intractable using generic algorithms. Inference can be made much more efficient by exploiting the QMR-DT's unique structure. Indeed, tailor-made inference algorithms for the QMR-DT efficiently generate exact disease posterior marginals for some diagnostic problems and accurate approximate posteriors for others. In this thesis, I identify a risk with using the QMR-DT disease posteriors for medical diagnosis. Specifically, I show that patients and physicians conspire to preferentially report findings that suggest the presence of disease. Because the QMR-DT does not contain an explicit model of this reporting bias, its disease posteriors may not be useful for diagnosis. Correcting these posteriors requires augmenting the QMR-DT with additional variables and dependencies that model the diagnostic procedure. I introduce the diagnostic QMR-DT (dQMR-DT), a Bayesian network containing both the QMR-DT and a simple model of the diagnostic procedure. Using diagnostic problems sampled from the dQMR-DT, I show the danger of doing diagnosis using disease posteriors from the unaugmented QMR-DT.
(cont.) I introduce a new class of approximate inference methods, based on feed-forward neural networks, for both the QMR-DT and the dQMR-DT. I show that these methods, recognition models, generate accurate approximate posteriors on the QMR-DT, on the dQMR-DT, and on a version of the dQMR-DT specified only indirectly through a set of presolved diagnostic problems.
by Quaid Donald Jozef Morris.
Ph.D.in Computational Neuroscience
Levine, Daniel S. Ph D. Massachusetts Institute of Technology. "Focused active inference". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95559.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-99).
In resource-constrained inferential settings, uncertainty can be efficiently minimized with respect to a resource budget by incorporating the most informative subset of observations - a problem known as active inference. Yet despite the myriad recent advances in both understanding and streamlining inference through probabilistic graphical models, which represent the structural sparsity of distributions, the propagation of information measures in these graphs is less well understood. Furthermore, active inference is an NP-hard problem, thus motivating investigation of bounds on the suboptimality of heuristic observation selectors. Prior work in active inference has considered only the unfocused problem, which assumes all latent states are of inferential interest. Often one learns a sparse, high-dimensional model from data and reuses that model for new queries that may arise. As any particular query involves only a subset of relevant latent states, this thesis explicitly considers the focused problem where irrelevant states are called nuisance variables. Marginalization of nuisances is potentially computationally expensive and induces a graph with less sparsity; observation selectors that treat nuisances as notionally relevant may fixate on reducing uncertainty in irrelevant dimensions. This thesis addresses two primary issues arising from the retention of nuisances in the problem and representing a gap in the existing observation selection literature. The interposition of nuisances between observations and relevant latent states necessitates the derivation of nonlocal information measures. This thesis presents propagation algorithms for nonlocal mutual information (MI) on universally embedded paths in Gaussian graphical models, as well as algorithms for estimating MI on Gaussian graphs with cycles via embedded substructures, engendering a significant computational improvement over existing linear algebraic methods. The presence of nuisances also undermines application of a technical diminishing returns condition called submodularity, which is typically used to bound the performance of greedy selection. This thesis introduces the concept of submodular relaxations, which can be used to generate online-computable performance bounds, and analyzes the class of optimal submodular relaxations providing the tightest such bounds.
by Daniel S. Levine.
Ph. D.
Olšarová, Nela. "Inference propojení komponent". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236505.
Texto completo da fonteMacCartney, Bill. "Natural language inference /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completo da fonteLivros sobre o assunto "Inference"
Bazett, Trefor. Bayesian Inference. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95792-6.
Texto completo da fonteWieczorek, Wojciech. Grammatical Inference. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46801-3.
Texto completo da fonteSchölkopf, Bernhard, Zhiyuan Luo e Vladimir Vovk, eds. Empirical Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6.
Texto completo da fonteBromek, Tadeusz, e Elżbieta Pleszczyńska, eds. Statistical Inference. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0575-7.
Texto completo da fonteHarney, Hanns Ludwig. Bayesian Inference. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41644-1.
Texto completo da fontePanik, Michael J. Statistical Inference. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118309773.
Texto completo da fonteHonavar, Vasant, e Giora Slutzki, eds. Grammatical Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0054058.
Texto completo da fontePouly, Marc, e Jürg Kohlas. Generic Inference. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010877.
Texto completo da fonteHarney, Hanns L. Bayesian Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06006-3.
Texto completo da fonteVerbelen, Tim, Pablo Lanillos, Christopher L. Buckley e Cedric De Boom, eds. Active Inference. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64919-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Inference"
Herkenhoff, Linda, e John Fogli. "Inference". In Applied Statistics for Business and Management using Microsoft Excel, 161–82. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8423-3_7.
Texto completo da fonteHooker, John N. "Inference". In Integrated Methods for Optimization, 223–369. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-1900-6_6.
Texto completo da fonteDobson, Annette J. "Inference". In An Introduction to Generalized Linear Models, 49–67. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-7252-1_5.
Texto completo da fonteGooch, Jan W. "Inference". In Encyclopedic Dictionary of Polymers, 983. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15258.
Texto completo da fonteColetti, Giulianella, e Romano Scozzafava. "Inference". In Probabilistic Logic in a Coherent Setting, 137–61. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0474-9_16.
Texto completo da fonteGroppe, Sven. "Inference". In Data Management and Query Processing in Semantic Web Databases, 177–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19357-6_9.
Texto completo da fonteWeik, Martin H. "inference". In Computer Science and Communications Dictionary, 771. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_8893.
Texto completo da fonteWang, Yong. "Inference". In Encyclopedia of Systems Biology, 1019–20. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_368.
Texto completo da fonteHeumann, Christian, Michael Schomaker e Shalabh. "Inference". In Introduction to Statistics and Data Analysis, 181–208. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46162-5_9.
Texto completo da fonteRisby, Bonnie, e Robert K. Risby. "Inference". In Lollipop Logic, 61–71. 2a ed. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003387206-9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Inference"
Haldimann, Jonas, e Christoph Beierle. "Inference with System W Satisfies Syntax Splitting". In 19th International Conference on Principles of Knowledge Representation and Reasoning {KR-2022}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/kr.2022/41.
Texto completo da fonteKonieczny, Sébastien, Pierre Marquis e Srdjan Vesic. "Rational Inference Relations from Maximal Consistent Subsets Selection". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/242.
Texto completo da fonteSharma, Ashish, Puneesh Khanna e Jaimin Maniyar. "Screening Deep Learning Inference Accelerators at the Production Lines". In 9th International Conference on Foundations of Computer Science & Technology (CST 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121911.
Texto completo da fonteBorovcnik, Manfred. "Informal inference – approaches towards statistical inference". In Decision Making Based on Data. International Association for Statistical Education, 2019. http://dx.doi.org/10.52041/srap.19101.
Texto completo da fonteRamírez, Julio C. "Inference Optimization Approach in Fuzzy Inference Systems". In 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA). IEEE, 2008. http://dx.doi.org/10.1109/cerma.2008.42.
Texto completo da fonteNarra, Krishna Giri, Zhifeng Lin, Yongqin Wang, Keshav Balasubramanian e Murali Annavaram. "Origami Inference: Private Inference Using Hardware Enclaves". In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). IEEE, 2021. http://dx.doi.org/10.1109/cloud53861.2021.00021.
Texto completo da fonteCaticha, Ariel, Ali Mohammad-Djafari, Jean-François Bercher e Pierre Bessiére. "Entropic Inference". In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573619.
Texto completo da fonteAiken, Alexander, e David Gay. "Barrier inference". In the 25th ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/268946.268974.
Texto completo da fonteFrank, Martin R., Piyawadee "Noi" Sukaviriya e James D. Foley. "Inference bear". In the conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/225434.225453.
Texto completo da fonteMu, Weiyan, e Xiaona Yuan. "Statistical inference for ANOVA under heteroscedasticity: Statistical inference". In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6201745.
Texto completo da fonteRelatórios de organizações sobre o assunto "Inference"
Kyburg Jr, Henry E. Probabilistic Inference and Non-Monotonic Inference. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1989. http://dx.doi.org/10.21236/ada250603.
Texto completo da fonteKyburg Jr, Henry E. Probabilistic Inference. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1992. http://dx.doi.org/10.21236/ada255471.
Texto completo da fonteGay, David. Barrier Inference. Fort Belvoir, VA: Defense Technical Information Center, julho de 1997. http://dx.doi.org/10.21236/ada637072.
Texto completo da fonteWarde, Cardinal. Optical Inference Machines. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada197880.
Texto completo da fonteChertkov, Michael, Sungsoo Ahn e Jinwoo Shin. Gauging Variational Inference. Office of Scientific and Technical Information (OSTI), maio de 2017. http://dx.doi.org/10.2172/1360686.
Texto completo da fonteSmith, David E., Michael R. Genesereth e Matthew I. Ginsberg. Controlling Recursive Inference,. Fort Belvoir, VA: Defense Technical Information Center, junho de 1985. http://dx.doi.org/10.21236/ada327440.
Texto completo da fonteAndrews, Isaiah, Toru Kitagawa e Adam McCloskey. Inference on Winners. Cambridge, MA: National Bureau of Economic Research, janeiro de 2019. http://dx.doi.org/10.3386/w25456.
Texto completo da fonteMcCloskey, Adam, Isaiah Andrews e Toru Kitagawa. Inference on winners. The IFS, maio de 2018. http://dx.doi.org/10.1920/wp.cem.2018.3118.
Texto completo da fonteKitagawa, Toru, Isaiah Andrews e Adam McCloskey. Inference on winners. The IFS, janeiro de 2019. http://dx.doi.org/10.1920/wp.cem.2018.7318.
Texto completo da fonteMetu, Somiya, e Adrienne Raglin. Inference Model Documentation. DEVCOM Army Research Laboratory, setembro de 2023. http://dx.doi.org/10.21236/ad1210687.
Texto completo da fonte