Artigos de revistas sobre o tema "Inertial Bregman proximal gradient"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Inertial Bregman proximal gradient".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock e Shoham Sabach. "Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization". SIAM Journal on Mathematics of Data Science 2, n.º 3 (janeiro de 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Texto completo da fonteKabbadj, S. "Inexact Version of Bregman Proximal Gradient Algorithm". Abstract and Applied Analysis 2020 (1 de abril de 2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Texto completo da fonteZhou, Yi, Yingbin Liang e Lixin Shen. "A simple convergence analysis of Bregman proximal gradient algorithm". Computational Optimization and Applications 73, n.º 3 (4 de abril de 2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Texto completo da fonteHanzely, Filip, Peter Richtárik e Lin Xiao. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization". Computational Optimization and Applications 79, n.º 2 (7 de abril de 2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Texto completo da fonteMahadevan, Sridhar, Stephen Giguere e Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (30 de junho de 2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Texto completo da fonteYang, Lei, e Kim-Chuan Toh. "Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant". SIAM Journal on Optimization 32, n.º 3 (13 de julho de 2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Texto completo da fonteLi, Jing, Xiao Wei, Fengpin Wang e Jinjia Wang. "IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning". Electronics 10, n.º 23 (3 de dezembro de 2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Texto completo da fonteXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications 188, n.º 3 (8 de janeiro de 2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Texto completo da fonteWang, Qingsong, Zehui Liu, Chunfeng Cui e Deren Han. "A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de março de 2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Texto completo da fonteHe, Lulu, Jimin Ye e Jianwei E. "Nonconvex optimization with inertial proximal stochastic variance reduction gradient". Information Sciences 648 (novembro de 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Texto completo da fonteZhu, Daoli, Sien Deng, Minghua Li e Lei Zhao. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method". Journal of Optimization Theory and Applications 189, n.º 3 (31 de maio de 2021): 889–918. http://dx.doi.org/10.1007/s10957-021-01865-4.
Texto completo da fonteHua, Xiaoqin, e Nobuo Yamashita. "Block coordinate proximal gradient methods with variable Bregman functions for nonsmooth separable optimization". Mathematical Programming 160, n.º 1-2 (27 de janeiro de 2016): 1–32. http://dx.doi.org/10.1007/s10107-015-0969-z.
Texto completo da fonteZhang, Xiaoya, Roberto Barrio, M. Angeles Martinez, Hao Jiang e Lizhi Cheng. "Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems". IEEE Access 7 (2019): 126515–29. http://dx.doi.org/10.1109/access.2019.2937005.
Texto completo da fonteKesornprom, Suparat, e Prasit Cholamjiak. "A modified inertial proximal gradient method for minimization problems and applications". AIMS Mathematics 7, n.º 5 (2022): 8147–61. http://dx.doi.org/10.3934/math.2022453.
Texto completo da fonteBoţ, Radu Ioan, Ernö Robert Csetnek e Nimit Nimana. "An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems". Vietnam Journal of Mathematics 46, n.º 1 (1 de setembro de 2017): 53–71. http://dx.doi.org/10.1007/s10013-017-0256-9.
Texto completo da fonteKankam, Kunrada, e Prasit Cholamjiak. "Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications". Acta Mathematica Scientia 43, n.º 3 (29 de abril de 2023): 1462–76. http://dx.doi.org/10.1007/s10473-023-0326-x.
Texto completo da fonteAhookhosh, Masoud, Le Thi Khanh Hien, Nicolas Gillis e Panagiotis Patrinos. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization". Journal of Optimization Theory and Applications 190, n.º 1 (15 de junho de 2021): 234–58. http://dx.doi.org/10.1007/s10957-021-01880-5.
Texto completo da fonteBao, Chenglong, Chang Chen null e Kai Jiang. "An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model". CSIAM Transactions on Applied Mathematics 3, n.º 1 (junho de 2022): 133–71. http://dx.doi.org/10.4208/csiam-am.so-2021-0002.
Texto completo da fonteWu, Zhongming, e Min Li. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems". Computational Optimization and Applications 73, n.º 1 (18 de fevereiro de 2019): 129–58. http://dx.doi.org/10.1007/s10589-019-00073-1.
Texto completo da fonteKesornprom, Suparat, Papatsara Inkrong, Uamporn Witthayarat e Prasit Cholamjiak. "A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations". AIMS Mathematics 9, n.º 7 (2024): 18841–59. http://dx.doi.org/10.3934/math.2024917.
Texto completo da fonteKESORNPROM, Suparat, e Prasit CHOLAMJİAK. "A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification". Results in Nonlinear Analysis 5, n.º 4 (30 de dezembro de 2022): 412–22. http://dx.doi.org/10.53006/rna.1143531.
Texto completo da fonteAdly, Samir, e Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping". SIAM Journal on Optimization 30, n.º 3 (janeiro de 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Texto completo da fontePakkaranang, Nuttapol, Poom Kumam, Vasile Berinde e Yusuf I. Suleiman. "Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery". Journal of Supercomputing 76, n.º 12 (27 de fevereiro de 2020): 9456–77. http://dx.doi.org/10.1007/s11227-020-03215-z.
Texto completo da fonteJolaoso, L. O., H. A. Abass e O. T. Mewomo. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space". Archivum Mathematicum, n.º 3 (2019): 167–94. http://dx.doi.org/10.5817/am2019-3-167.
Texto completo da fonteBussaban, Limpapat, Attapol Kaewkhao e Suthep Suantai. "Inertial s-iteration forward-backward algorithm for a family of nonexpansive operators with applications to image restoration problems". Filomat 35, n.º 3 (2021): 771–82. http://dx.doi.org/10.2298/fil2103771b.
Texto completo da fonteWang, Xiaofan, Zhiyuan Deng, Changle Wang e Jinjia Wang. "Inertial Algorithm with Dry Fraction and Convolutional Sparse Coding for 3D Localization with Light Field Microscopy". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 18 (24 de março de 2024): 20830–37. http://dx.doi.org/10.1609/aaai.v38i18.30072.
Texto completo da fonteLoría-Calderón, Tyrone M., Carlos D. Gómez-Carmona, Keven G. Santamaría-Guzmán, Mynor Rodríguez-Hernández e José Pino-Ortega. "Quantifying the External Joint Workload and Safety of Latin Dance in Older Adults: Potential Benefits for Musculoskeletal Health". Applied Sciences 14, n.º 7 (22 de março de 2024): 2689. http://dx.doi.org/10.3390/app14072689.
Texto completo da fonteWu, Zhongming, Chongshou Li, Min Li e Andrew Lim. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems". Journal of Global Optimization, 19 de agosto de 2020. http://dx.doi.org/10.1007/s10898-020-00943-7.
Texto completo da fonteGao, Xue, Xingju Cai, Xiangfeng Wang e Deren Han. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant". Journal of Global Optimization, 24 de junho de 2023. http://dx.doi.org/10.1007/s10898-023-01300-0.
Texto completo da fonteZhang, Hui, Yu-Hong Dai, Lei Guo e Wei Peng. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions". Mathematics of Operations Research, 25 de junho de 2019. http://dx.doi.org/10.1287/moor.2019.1047.
Texto completo da fonteTakahashi, Shota, Mituhiro Fukuda e Mirai Tanaka. "New Bregman proximal type algorithms for solving DC optimization problems". Computational Optimization and Applications, 23 de setembro de 2022. http://dx.doi.org/10.1007/s10589-022-00411-w.
Texto completo da fonteLiu, Jin-Zan, e Xin-Wei Liu. "A dual Bregman proximal gradient method for relatively-strongly convex optimization". Numerical Algebra, Control & Optimization, 2021, 0. http://dx.doi.org/10.3934/naco.2021028.
Texto completo da fonteSun, Tao, Linbo Qiao e Dongsheng Li. "Nonergodic Complexity of Proximal Inertial Gradient Descents". IEEE Transactions on Neural Networks and Learning Systems, 2020, 1–14. http://dx.doi.org/10.1109/tnnls.2020.3025157.
Texto completo da fonteChen, Kangming, Ellen H. Fukuda e Nobuo Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization". Pacific Journal of Optimization, 2024. http://dx.doi.org/10.61208/pjo-2024-012.
Texto completo da fonteMukkamala, Mahesh Chandra, Jalal Fadili e Peter Ochs. "Global convergence of model function based Bregman proximal minimization algorithms". Journal of Global Optimization, 1 de dezembro de 2021. http://dx.doi.org/10.1007/s10898-021-01114-y.
Texto completo da fonteXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications, 8 de janeiro de 2021. http://dx.doi.org/10.1007/s10957-020-01799-3.
Texto completo da fonteBonettini, S., M. Prato e S. Rebegoldi. "A new proximal heavy ball inexact line-search algorithm". Computational Optimization and Applications, 10 de março de 2024. http://dx.doi.org/10.1007/s10589-024-00565-9.
Texto completo da fonteDuan, Peichao, Yiqun Zhang e Qinxiong Bu. "New inertial proximal gradient methods for unconstrained convex optimization problems". Journal of Inequalities and Applications 2020, n.º 1 (dezembro de 2020). http://dx.doi.org/10.1186/s13660-020-02522-6.
Texto completo da fonteHertrich, Johannes, e Gabriele Steidl. "Inertial stochastic PALM and applications in machine learning". Sampling Theory, Signal Processing, and Data Analysis 20, n.º 1 (22 de abril de 2022). http://dx.doi.org/10.1007/s43670-022-00021-x.
Texto completo da fonteZhang, Xiaoya, Wei Peng e Hui Zhang. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees". Mathematical Methods of Operations Research, 25 de junho de 2022. http://dx.doi.org/10.1007/s00186-022-00790-0.
Texto completo da fonteGuo, Chenzheng, Jing Zhao e Qiao-Li Dong. "A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems". Numerical Algorithms, 9 de novembro de 2023. http://dx.doi.org/10.1007/s11075-023-01693-9.
Texto completo da fonteJia, Zehui, Jieru Huang e Xingju Cai. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems". Journal of Global Optimization, 29 de maio de 2021. http://dx.doi.org/10.1007/s10898-021-01044-9.
Texto completo da fonteKankam, Kunrada, Watcharaporn Cholamjiak e Prasit Cholamjiak. "New inertial forward–backward algorithm for convex minimization with applications". Demonstratio Mathematica 56, n.º 1 (1 de janeiro de 2023). http://dx.doi.org/10.1515/dema-2022-0188.
Texto completo da fonteSun, Shuya, e Lulu He. "General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization". Journal of Inequalities and Applications 2023, n.º 1 (17 de fevereiro de 2023). http://dx.doi.org/10.1186/s13660-023-02922-4.
Texto completo da fonteInkrong, Papatsara, e Prasit Cholamjiak. "Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion". Mathematical Methods in the Applied Sciences, 30 de abril de 2024. http://dx.doi.org/10.1002/mma.10159.
Texto completo da fonteValkonen, Tuomo. "Proximal methods for point source localisation". Journal of Nonsmooth Analysis and Optimization Volume 4, Original research articles (21 de setembro de 2023). http://dx.doi.org/10.46298/jnsao-2023-10433.
Texto completo da fonteMouktonglang, Thanasak, Wipawinee Chaiwino e Raweerote Suparatulatorn. "A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings". Journal of Inequalities and Applications 2024, n.º 1 (15 de maio de 2024). http://dx.doi.org/10.1186/s13660-024-03145-x.
Texto completo da fonte"Convergence of proximal gradient method with alternated inertial step for minimization problem". Advances in Fixed Point Theory, 2024. http://dx.doi.org/10.28919/afpt/8625.
Texto completo da fonteSilveti-Falls, Antonio, Cesare Molinari e Jalal Fadili. "Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step". Journal of Nonsmooth Analysis and Optimization Volume 2, Original research articles (1 de setembro de 2021). http://dx.doi.org/10.46298/jnsao-2021-6480.
Texto completo da fonteCohen, Eyal, e Marc Teboulle. "Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis". Mathematics of Operations Research, 8 de fevereiro de 2024. http://dx.doi.org/10.1287/moor.2022.0294.
Texto completo da fonte