Artigos de revistas sobre o tema "Indoor robotics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Indoor robotics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cooper, Martin. "Paw-Sitive Reception for Robot Guide Dog". ITNOW 66, n.º 2 (20 de maio de 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048a.
Texto completo da fonteCooper, Martin. "Paw-Sitive Reception for Robot Guide Dog". ITNOW 66, n.º 2 (1 de maio de 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048.
Texto completo da fonteWang, Jianguo, Shiwei Lin e Ang Liu. "Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review". Biomimetics 8, n.º 4 (7 de agosto de 2023): 350. http://dx.doi.org/10.3390/biomimetics8040350.
Texto completo da fonteDahri, Fida Hussain, Ghulam E. Mustafa Abro, Nisar Ahmed Dahri, Asif Ali Laghari e Zain Anwar Ali. "Advancing Robotic Automation with Custom Sequential Deep CNN-Based Indoor Scene Recognition". IECE Transactions on Intelligent Systematics 2, n.º 1 (27 de dezembro de 2024): 14–26. https://doi.org/10.62762/tis.2025.613103.
Texto completo da fonteCaro, Luis, Javier Correa, Pablo Espinace, Daniel Langdon, Daniel Maturana, Ruben Mitnik, Sebastian Montabone et al. "Indoor Mobile Robotics at Grima, PUC". Journal of Intelligent & Robotic Systems 66, n.º 1-2 (20 de julho de 2011): 151–65. http://dx.doi.org/10.1007/s10846-011-9604-2.
Texto completo da fonteFrías, E., J. Balado, L. Díaz-Vilariño e H. Lorenzo. "POINT CLOUD ROOM SEGMENTATION BASED ON INDOOR SPACES AND 3D MATHEMATICAL MORPHOLOGY". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-2020 (3 de setembro de 2020): 49–55. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w1-2020-49-2020.
Texto completo da fonteJimenez Builes, Jovani Alberto, Gustavo Acosta Amaya e Julián López Velásquez. "Autonomous navigation and indoor mapping for a service robot". Investigación e Innovación en Ingenierías 11, n.º 2 (22 de setembro de 2023): 28–38. http://dx.doi.org/10.17081/invinno.11.2.6459.
Texto completo da fonteTajti, Ferenc, Géza Szayer, Bence Kovács e Mauricio A. P. Burdelis. "Mobile Robot Performance Analysis for Indoor Robotics". Periodica Polytechnica Civil Engineering 59, n.º 2 (2015): 123–31. http://dx.doi.org/10.3311/ppci.7759.
Texto completo da fonteVekhter, Joshua, e Joydeep Biswas. "Responsible Robotics: A Socio-Ethical Addition to Robotics Courses". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15877–85. http://dx.doi.org/10.1609/aaai.v37i13.26885.
Texto completo da fonteMANO, Marsel, e Genci CAPI. "1A2-D03 Adaptive navigation of a brain controlled robotic wheelchair in an indoor environment(Rehabilitation Robotics and Mechatronics (2))". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2013 (2013): _1A2—D03_1—_1A2—D03_4. http://dx.doi.org/10.1299/jsmermd.2013._1a2-d03_1.
Texto completo da fonteGhawana, T., M. Aleksandrov e S. Zlatanova. "3D GEOSPATIAL INDOOR NAVIGATION FOR DISASTER RISK REDUCTION AND RESPONSE IN URBAN ENVIRONMENT". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4 (19 de setembro de 2018): 49–57. http://dx.doi.org/10.5194/isprs-annals-iv-4-49-2018.
Texto completo da fonteMozos, Oscar Martinez, Francois Chollet, Kouji Murakami, Ken'ichi Morooka, Tokuo Tsuji, Ryo Kurazume e Tsutomu Hasegawa. "Tracing Commodities in Indoor Environments for Service Robotics". IFAC Proceedings Volumes 45, n.º 22 (2012): 71–76. http://dx.doi.org/10.3182/20120905-3-hr-2030.00046.
Texto completo da fonteNITTA, Yoshihiro, Daiki SASAKI e Hiroaki SAITO. "Research on Indoor Temperature Measurement Using Robotics Technology". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2021 (2021): 2P2—A06. http://dx.doi.org/10.1299/jsmermd.2021.2p2-a06.
Texto completo da fonteANDO, Takeshi, e Hiroyuki UEMATSU. "Delivering Innovation Using Indoor Autonomous Mobile Robotics Technology". Proceedings of Mechanical Engineering Congress, Japan 2019 (2019): S40111. http://dx.doi.org/10.1299/jsmemecj.2019.s40111.
Texto completo da fonteZuo, X., F. Yang, Y. Liang, Z. Gang, F. Su, H. Zhu e L. Li. "AN IMPROVED AUTONOMOUS EXPLORATION FRAMEWORK FOR INDOOR MOBILE ROBOTICS USING REDUCED APPROXIMATED GENERALIZED VORONOI GRAPHS". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2020 (3 de agosto de 2020): 351–59. http://dx.doi.org/10.5194/isprs-annals-v-1-2020-351-2020.
Texto completo da fonteLiu, Zhizhong, Weishen Yan, Jianguo Kou e Zhida Li. "Collaboration and Management of Heterogeneous Robotic Systems for Road Network Construction, Management, and Maintenance under the Vision of “BIM + GIS” Technology". Journal of Robotics 2023 (12 de abril de 2023): 1–8. http://dx.doi.org/10.1155/2023/8259912.
Texto completo da fontePotortì, Francesco, Filippo Palumbo e Antonino Crivello. "Sensors and Sensing Technologies for Indoor Positioning and Indoor Navigation". Sensors 20, n.º 20 (20 de outubro de 2020): 5924. http://dx.doi.org/10.3390/s20205924.
Texto completo da fonteIsmai, Abdul Halim, e Kazuhiko Terashima. "OS17-2 Optimization of Wireless Nodes Placement for Mobile Robot Indoor Localization(Robotics and Mechatronics (1),OS17 Robotics and mechatronics,APPLICATIONS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 229. http://dx.doi.org/10.1299/jsmeatem.2015.14.229.
Texto completo da fonteAcosta-Amaya, Gustavo A., Deimer A. Miranda-Montoya e Jovani A. Jimenez-Builes. "Lightweight Two-Layer Control Architecture for Human-Following Robot". Sensors 24, n.º 23 (5 de dezembro de 2024): 7796. https://doi.org/10.3390/s24237796.
Texto completo da fonteBasha, Mudasar, Munuswamy Siva Kumar, Mangali Chinna Chinnaiah, Siew-Kei Lam, Thambipillai Srikanthan, Janardhan Narambhatla, Hari Krishna Dodde e Sanjay Dubey. "Hardware Schemes for Smarter Indoor Robotics to Prevent the Backing Crash Framework Using Field Programmable Gate Array-Based Multi-Robots". Sensors 24, n.º 6 (7 de março de 2024): 1724. http://dx.doi.org/10.3390/s24061724.
Texto completo da fonteTagliavini, Luigi, Lorenzo Baglieri, Giovanni Colucci, Andrea Botta, Carmen Visconte e Giuseppe Quaglia. "D.O.T. PAQUITOP, an Autonomous Mobile Manipulator for Hospital Assistance". Electronics 12, n.º 2 (4 de janeiro de 2023): 268. http://dx.doi.org/10.3390/electronics12020268.
Texto completo da fonteCao, Junming, Xiting Zhao e Sören Schwertfeger. "Large-Scale Indoor Visual–Geometric Multimodal Dataset and Benchmark for Novel View Synthesis". Sensors 24, n.º 17 (6 de setembro de 2024): 5798. http://dx.doi.org/10.3390/s24175798.
Texto completo da fonteKhan, Sultan Daud, e Kamal M. Othman. "Indoor Scene Classification through Dual-Stream Deep Learning: A Framework for Improved Scene Understanding in Robotics". Computers 13, n.º 5 (14 de maio de 2024): 121. http://dx.doi.org/10.3390/computers13050121.
Texto completo da fonteYao, M. M., X. M. Li, W. X. Wang, L. F. Xie e S. J. Tang. "SEMANTIC SEGMENTATION OF INDOOR 3D POINT CLOUDS BY JOINT OPTIMIZATION OF GEOMETRIC FEATURES AND NEURAL NETWORKS". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-4/W2-2022 (14 de outubro de 2022): 305–10. http://dx.doi.org/10.5194/isprs-annals-x-4-w2-2022-305-2022.
Texto completo da fonteMartinez, Fredy, Holman Montiel e Fernando Martinez. "A novel visual tracking scheme for unstructured indoor environments". International Journal of Electrical and Computer Engineering (IJECE) 13, n.º 6 (1 de dezembro de 2023): 6216. http://dx.doi.org/10.11591/ijece.v13i6.pp6216-6227.
Texto completo da fonteIsmail, Zool H., e Iksan Bukhori. "Efficient Detection of Robot Kidnapping in Range Finder-Based Indoor Localization Using Quasi-Standardized 2D Dynamic Time Warping". Applied Sciences 11, n.º 4 (9 de fevereiro de 2021): 1580. http://dx.doi.org/10.3390/app11041580.
Texto completo da fonteKwon, Ki-Hyeon, Si-Byung Nam e Se-Hun Lee. "Collision Avoidance for Indoor Mobile Robotics using Stereo Vision Sensor". Journal of the Korea Academia-Industrial cooperation Society 14, n.º 5 (31 de maio de 2013): 2400–2405. http://dx.doi.org/10.5762/kais.2013.14.5.2400.
Texto completo da fonteJung, Tae-Won, Chi-Seo Jeong, Soon-Chul Kwon e Kye-Dong Jung. "Point-Graph Neural Network Based Novel Visual Positioning System for Indoor Navigation". Applied Sciences 11, n.º 19 (2 de outubro de 2021): 9187. http://dx.doi.org/10.3390/app11199187.
Texto completo da fonteLeandro Vizzotto, Fábio, Marcos D'Addio de Moura, Vinicius Carbonezi de Souza, Cides Semprebom Bezerra, Guilherme Ribeiro Sales, Valentino Corso, Luiz Eduardo Pita Mercês Almeida e Douglas Henrique Siqueira Abreu. "Case Study of Deep Learning Methods for Depth Estimation in Indoor Ground Robotics". Revista de Informática Teórica e Aplicada 32, n.º 1 (20 de fevereiro de 2025): 166–72. https://doi.org/10.22456/2175-2745.143443.
Texto completo da fonteChung, Chan-Jin. "Robofest – A Playful Learning Environment Through Autonomous Robotics". Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 7, Especial (4 de setembro de 2019): 1–3. http://dx.doi.org/10.29057/icbi.v7iespecial.4770.
Texto completo da fonteAbdul-Samed, Baqir, e Ammar Aldair. "Outdoor & Indoor Quadrotor Mission". 3D SCEEER Conference sceeer, n.º 3d (1 de julho de 2020): 1–12. http://dx.doi.org/10.37917/ijeee.sceeer.3rd.01.
Texto completo da fontede Ronde, Willis, Natasha Botha, Beatrice van Eden e Lerato Tshabalala. "Material selection and optimisation of a 3D-printed indoor aerial robotics platform". MATEC Web of Conferences 406 (2024): 04016. https://doi.org/10.1051/matecconf/202440604016.
Texto completo da fonteC., Ujjwal K., e Jacques Chodorowski. "A Case Study of Adding Proactivity in Indoor Social Robots Using Belief–Desire–Intention (BDI) Model". Biomimetics 4, n.º 4 (20 de novembro de 2019): 74. http://dx.doi.org/10.3390/biomimetics4040074.
Texto completo da fonteLiu, Hanyu, Yanhan Zeng, Ruguo Li e Huajie Huang. "A high-accuracy indoor positioning system based on UWB". MATEC Web of Conferences 173 (2018): 01021. http://dx.doi.org/10.1051/matecconf/201817301021.
Texto completo da fonteFernando, Gimo C., Tinghao Qi, Edmund V. Ndimbo, Assefa Tesfay Abraha e Bang Wang. "On Fusing Wireless Fingerprints with Pedestrian Dead Reckoning to Improve Indoor Localization Accuracy". Sensors 25, n.º 5 (20 de fevereiro de 2025): 1294. https://doi.org/10.3390/s25051294.
Texto completo da fonteChen, Yujin, Ruizhi Chen, Mengyun Liu, Aoran Xiao, Dewen Wu e Shuheng Zhao. "Indoor Visual Positioning Aided by CNN-Based Image Retrieval: Training-Free, 3D Modeling-Free". Sensors 18, n.º 8 (16 de agosto de 2018): 2692. http://dx.doi.org/10.3390/s18082692.
Texto completo da fonteShamsudin, Abu Ubaidah, Puteri Alisha Balqis Mohd Sharif, Zubair Adil Soomro, Ruzairi Abdul Rahim, Ahmad Athif Mohd Faudzi, Wan Nurshazwani Wan Zakaria, Mohamad Heerwan Peeie e Carl John Salaan. "Autonomous Navigation Robot using Slam and Path Planning Based on a Single RP-LIDAR". Journal of Advanced Research in Applied Sciences and Engineering Technology 53, n.º 2 (7 de outubro de 2024): 161–69. https://doi.org/10.37934/araset.53.2.161169.
Texto completo da fonteAssali, M., G. Pipelidis, V. Podolskiy, D. Iwaszczuk, L. Heinen e M. Gerndt. "QUANTIFYING THE QUALITY OF INDOOR MAPS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (5 de junho de 2019): 739–45. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-739-2019.
Texto completo da fontePitkäaho, Tomi, Tero Kaarlela, Sakari Pieskä e Sami Sarlin. "Indoor positioning, artificial intelligence and digital twins for enhanced robotics safety". IFAC-PapersOnLine 54, n.º 1 (2021): 540–45. http://dx.doi.org/10.1016/j.ifacol.2021.08.062.
Texto completo da fonteGregory, Calvin, e Andrew Vardy. "microUSV: A low-cost platform for indoor marine swarm robotics research". HardwareX 7 (abril de 2020): e00105. http://dx.doi.org/10.1016/j.ohx.2020.e00105.
Texto completo da fonteBulanon, Duke M., Colton Burr, Marina DeVlieg, Trevor Braddock e Brice Allen. "Development of a Visual Servo System for Robotic Fruit Harvesting". AgriEngineering 3, n.º 4 (28 de outubro de 2021): 840–52. http://dx.doi.org/10.3390/agriengineering3040053.
Texto completo da fonteGoel, Keshav. "Automated Air Purifier Robot". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de maio de 2024): 4052–55. http://dx.doi.org/10.22214/ijraset.2024.62468.
Texto completo da fonteRidlwan, Hasvienda Mohammad, Sonki Prasetya e Musli Min. "2D Mapping Lingkungan Indoor Menggunakan Lidar dan ROS untuk Mobile Robot". Jurnal Mekanik Terapan 3, n.º 2 (31 de agosto de 2022): 60–65. http://dx.doi.org/10.32722/jmt.v3i2.4285.
Texto completo da fonteWu, Lei. "Analysis of Indoor Path Planning Techniques for Wheeled Mobile Robots". Highlights in Science, Engineering and Technology 52 (4 de julho de 2023): 208–17. http://dx.doi.org/10.54097/hset.v52i.8891.
Texto completo da fonteLiu, Yanbaihui. "Localization and Navigation System for Indoor Mobile Robot". Highlights in Science, Engineering and Technology 43 (14 de abril de 2023): 198–206. http://dx.doi.org/10.54097/hset.v43i.7420.
Texto completo da fonteBao, Yin, Dylan S. Shah e Lie Tang. "3D Perception-Based Collision-Free Robotic Leaf Probing for Automated Indoor Plant Phenotyping". Transactions of the ASABE 61, n.º 3 (2018): 859–72. http://dx.doi.org/10.13031/trans.12653.
Texto completo da fonteHensel, Stefan, Marin B. Marinov e Markus Obert. "3D LiDAR Based SLAM System Evaluation with Low-Cost Real-Time Kinematics GPS Solution". Computation 10, n.º 9 (4 de setembro de 2022): 154. http://dx.doi.org/10.3390/computation10090154.
Texto completo da fonteHuang, H. S., S. J. Tang, W. X. Wang, X. M. Li e R. Z. Guo. "FROM BIM TO POINTCLOUD: AUTOMATIC GENERATION OF LABELED INDOOR POINTCLOUD". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B5-2022 (2 de junho de 2022): 73–78. http://dx.doi.org/10.5194/isprs-archives-xliii-b5-2022-73-2022.
Texto completo da fonteSurendran, Ranjini, Ines Chihi, J. Anitha e D. Jude Hemanth. "Indoor Scene Recognition: An Attention-Based Approach Using Feature Selection-Based Transfer Learning and Deep Liquid State Machine". Algorithms 16, n.º 9 (8 de setembro de 2023): 430. http://dx.doi.org/10.3390/a16090430.
Texto completo da fonteVenture, Gentiane. "Special Issue on Developments and Learning from the World Robot Challenge". Journal of Robotics and Mechatronics 35, n.º 1 (20 de fevereiro de 2023): 7. http://dx.doi.org/10.20965/jrm.2023.p0007.
Texto completo da fonte