Literatura científica selecionada sobre o tema "Indoor robotics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Indoor robotics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Indoor robotics"
Cooper, Martin. "Paw-Sitive Reception for Robot Guide Dog". ITNOW 66, n.º 2 (20 de maio de 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048a.
Texto completo da fonteCooper, Martin. "Paw-Sitive Reception for Robot Guide Dog". ITNOW 66, n.º 2 (1 de maio de 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048.
Texto completo da fonteWang, Jianguo, Shiwei Lin e Ang Liu. "Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review". Biomimetics 8, n.º 4 (7 de agosto de 2023): 350. http://dx.doi.org/10.3390/biomimetics8040350.
Texto completo da fonteDahri, Fida Hussain, Ghulam E. Mustafa Abro, Nisar Ahmed Dahri, Asif Ali Laghari e Zain Anwar Ali. "Advancing Robotic Automation with Custom Sequential Deep CNN-Based Indoor Scene Recognition". IECE Transactions on Intelligent Systematics 2, n.º 1 (27 de dezembro de 2024): 14–26. https://doi.org/10.62762/tis.2025.613103.
Texto completo da fonteCaro, Luis, Javier Correa, Pablo Espinace, Daniel Langdon, Daniel Maturana, Ruben Mitnik, Sebastian Montabone et al. "Indoor Mobile Robotics at Grima, PUC". Journal of Intelligent & Robotic Systems 66, n.º 1-2 (20 de julho de 2011): 151–65. http://dx.doi.org/10.1007/s10846-011-9604-2.
Texto completo da fonteFrías, E., J. Balado, L. Díaz-Vilariño e H. Lorenzo. "POINT CLOUD ROOM SEGMENTATION BASED ON INDOOR SPACES AND 3D MATHEMATICAL MORPHOLOGY". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-2020 (3 de setembro de 2020): 49–55. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w1-2020-49-2020.
Texto completo da fonteJimenez Builes, Jovani Alberto, Gustavo Acosta Amaya e Julián López Velásquez. "Autonomous navigation and indoor mapping for a service robot". Investigación e Innovación en Ingenierías 11, n.º 2 (22 de setembro de 2023): 28–38. http://dx.doi.org/10.17081/invinno.11.2.6459.
Texto completo da fonteTajti, Ferenc, Géza Szayer, Bence Kovács e Mauricio A. P. Burdelis. "Mobile Robot Performance Analysis for Indoor Robotics". Periodica Polytechnica Civil Engineering 59, n.º 2 (2015): 123–31. http://dx.doi.org/10.3311/ppci.7759.
Texto completo da fonteVekhter, Joshua, e Joydeep Biswas. "Responsible Robotics: A Socio-Ethical Addition to Robotics Courses". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15877–85. http://dx.doi.org/10.1609/aaai.v37i13.26885.
Texto completo da fonteMANO, Marsel, e Genci CAPI. "1A2-D03 Adaptive navigation of a brain controlled robotic wheelchair in an indoor environment(Rehabilitation Robotics and Mechatronics (2))". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2013 (2013): _1A2—D03_1—_1A2—D03_4. http://dx.doi.org/10.1299/jsmermd.2013._1a2-d03_1.
Texto completo da fonteTeses / dissertações sobre o assunto "Indoor robotics"
Vojta, Jakub. "Bezpečnost provozu mobilních robotů v indoor prostředí". Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-232641.
Texto completo da fontePettersson, Rasmus. "Continuous localization in indoor shifting environment". Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326270.
Texto completo da fontePerko, Eric Michael. "Precision Navigation for Indoor Mobile Robots". Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1345513785.
Texto completo da fonteYang, Yin. "Nonlinear control and state estimation of holonomic indoor airship". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106573.
Texto completo da fonteTrois méthodes optimales de commande à retour d'état complet sont proposées ici afin d'accomplir les exigences du vol intérieur d'un ballon dirigeable holonomique, et ceci, en temps réel. Les manoeuvres exigées incluent le maintien d'une position stationnaire, le mouvement vers un point et suivant une trajectoire continue. Pour la régularisation, un modèle quasi-stationnaire du ballon est assumé et un régulateur quadratique-linéaire (LQR) à horizon infini est utilisé dans un mode d'échelonnage des gains. De plus, les mouvements vers un point sont accomplis en se basant sur le retour d'état pour résoudre l'équation de Riccati qui en dépend et pour compenser la dynamique non-linéaire. Finalement, les perturbations autour d'une trajectoire continue sont rejetées par une méthode dédiée afin de suivre cette trajectoire. Preuves expérimentales et simulées à l'appui, ces méthodes de commande démontrent des avantages significatifs par rapport aux méthodes classiques de commande porportionelle-dérivée (PD), et ceci, avec des exigences modérées sur le système informatique. Ce travail de thèse démontre aussi l'utilisation d'un filtre de Kalman non-parfumé (UKF) pour estimer l'état du système. Cette estimation produit le retour d'ètat complet nècessaire aux mèthodes de commande et à d'autres tâches de navigation en combinant les mesures de différents systèmes enbarqués (système inertiel et télédétecteur par laser) et non-embarqués (système de capture du mouvement à l'infra-rouge). Une méthode de fusion sensorielle à séparation partielle est utilisée et validée expérimentalement.
Gandhi, Anall Vijaykumar. "An Accuracy Improvement Method for Cricket Indoor Location System". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369316496.
Texto completo da fonteValdmanis, Mikelis. "Localization and navigation of a holonomic indoor airship using on-board sensors". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97204.
Texto completo da fonteDeux approches de navigation et localisation d'un drone intérieur équipé de capteurs et capable de six degrés de liberté seront présentées. Premièrement, des vols ayant comme simple but d'éviter des obstacles et de naviguer le drone ont été exécutés à l'aide d'une caméra vidéo. Deux algorithmes de flux optique ont été étudiés. Le flux optique estime le déplacement de l'environnement relatif à la caméra en calculant les variations dans la clarté de l'image. Les traits caractéristiques de l'environnement, comme les obstacles, sont alors déterminés en se basant sur le champ de flux optique. Les résultats démontrent que ni l'un ni l'autre des algorithmes sont adéquats pour naviguer le drone.La localisation du drone dans une représentation d'état, caractérisée par trois degrés de liberté en translation et par la vitesse de lacet, ainsi que dans un environnement connu a été accomplie en utilisant l'algorithme avancé de Localisation Monte Carlo (MCL) et un télémètre laser. MCL est un algorithme probabiliste qui génère aléatoirement plusieurs estimés, nommés particules, d'états potentiels du drone. À chaque incrément de temps, la position de chaque particule est ajustée selon les déplacements estimés du drone et ces particules sont pondérées en comparant les valeurs estimées du capteur avec les valeurs actuelles. Ensuite, un nouvel ensemble de particules est créé à partir du précédent en considérant la pondération des particules. Après plusieurs incréments de temps, l'ensemble converge vers la position réelle du drone. L'algorithme MCL accompli alors une localisation globale, un suivi de position et une résolution du problème du robot « kidnappé ». L'analyse hors-ligne des résultats avec l'algorithme MCL est présentée et les possibilités d'implémenter cette méthode en ligne sont discutées.
Szenher, Matthew D. "Visual homing in dynamic indoor environments". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3193.
Texto completo da fonteFernandez, labrador Clara. "Indoor Scene Understanding using Non-Conventional Cameras". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK037.
Texto completo da fonteHumans understand environments effortlessly, under a wide variety of conditions, by the virtue of visual perception. Computer vision for similar visual understanding is highly desirable, so that machines can perform complex tasks by interacting with the real world, to assist or entertain humans. In this regard, we are particularly interested in indoor environments, where humans spend nearly all their lifetime.This thesis specifically addresses the problems that arise during the quest of the hierarchical visual understanding of indoor scenes.On the side of sensing the wide 3D world, we propose to use non-conventional cameras, namely 360º imaging and 3D sensors. On the side of understanding, we aim at three key aspects: room layout estimation; object detection, localization and segmentation; and object category shape modeling, for which novel and efficient solutions are provided.The focus of this thesis is on the following underlying challenges. First, the estimation of the 3D room layout from a single 360º image is investigated, which is used for the highest level of scene modelling and understanding. We exploit the assumption of Manhattan World and deep learning techniques to propose models that handle invisible parts of the room on the image, generalizing to more complex layouts. At the same time, new methods to work with 360º images are proposed, highlighting a special convolution that compensates the equirectangular image distortions.Second, considering the importance of context for scene understanding, we study the problem of object localization and segmentation, adapting the problem to leverage 360º images. We also exploit layout-objects interaction to lift detected 2D objects into the 3D room model.The final line of work of this thesis focuses on 3D object shape analysis. We use an explicit modelling of non-rigidity and a high-level notion of object symmetry to learn, in an unsupervised manner, 3D keypoints that are order-wise correspondent as well as geometrically and semantically consistent across objects in a category.Our models advance state-of-the-art on the aforementioned tasks, when each evaluated on respective reference benchmarks
Xiao, Zhuoling. "Robust indoor positioning with lifelong learning". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:218283f1-e28a-4ad0-9637-e2acd67ec394.
Texto completo da fonteSelin, Magnus. "Efficient Autonomous Exploration Planning of Large-Scale 3D-Environments : A tool for autonomous 3D exploration indoor". Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163329.
Texto completo da fonteLivros sobre o assunto "Indoor robotics"
M, Evans J., e National Institute of Standards and Technology (U.S.), eds. Three dimensional data capture in indoor environments for autonomous navigation. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Encontre o texto completo da fonte1942-, Evans John M., e National Institute of Standards and Technology (U.S.), eds. Three dimensional data capture in indoor environments for autonomous navigation. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Encontre o texto completo da fonteFlorczyk, Stefan. Robot Vision: Video-Based Indoor Exploration with Autonomous and Mobile Robots. Wiley & Sons, Incorporated, John, 2006.
Encontre o texto completo da fonteFLORCZYK, STEFAN. Robot Vision: Video-Based Indoor Exploration with Autonomous and Mobile Robots. Not Avail, 2005.
Encontre o texto completo da fonteSanfeliu, Alberto, e Juan Andrade Cetto. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building. Springer, 2010.
Encontre o texto completo da fonteAndrade-Cetto, Juan, e Alberto Sanfeliu. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building (Springer Tracts in Advanced Robotics). Springer, 2006.
Encontre o texto completo da fonteZufferey, Jean-Christophe. Bio-Inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers. Taylor & Francis Group, 2008.
Encontre o texto completo da fonteEnvironment Learning for Indoor Mobile Robots. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/11418382.
Texto completo da fonteAndrade-Cetto, Alberto Sanfeliu Juan. Environment Learning for Indoor Mobile Robots. Springer, 2009.
Encontre o texto completo da fonteZufferey, Jean-Christophe. Bio-Inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers. Taylor & Francis Group, 2008.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Indoor robotics"
Zhang, Rui, Wanyue Jiang, Zhonghao Zhang, Yuhan Zheng e Shuzhi Sam Ge. "Indoor Mobile Robot Socially Concomitant Navigation System". In Social Robotics, 485–95. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24667-8_43.
Texto completo da fonteAh Sen, Nick, Pamela Carreno-Medrano e Dana Kulić. "Human-Aware Subgoal Generation in Crowded Indoor Environments". In Social Robotics, 50–60. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24667-8_5.
Texto completo da fonteSprunk, Christoph, Jörg Röwekämper, Gershon Parent, Luciano Spinello, Gian Diego Tipaldi, Wolfram Burgard e Mihai Jalobeanu. "An Experimental Protocol for Benchmarking Robotic Indoor Navigation". In Experimental Robotics, 487–504. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23778-7_32.
Texto completo da fonteLiu, Zhongzheng, Zhigang Liu e Bingheng Lu. "Error Compensation of Indoor GPS Measurement". In Intelligent Robotics and Applications, 612–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88518-4_66.
Texto completo da fonteZhu, Huishen, Brenton Leighton, Yongbo Chen, Xijun Ke, Songtao Liu e Liang Zhao. "Indoor Navigation System Using the Fetch Robot". In Intelligent Robotics and Applications, 686–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27538-9_59.
Texto completo da fonteShen, Shaojie, e Nathan Michael. "State Estimation for Indoor and Outdoor Operation with a Micro-Aerial Vehicle". In Experimental Robotics, 273–88. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00065-7_20.
Texto completo da fonteYang, Dongjun, e Younggoo Kwon. "The Integrated Indoor Positioning by Considering Spatial Characteristics". In Intelligent Robotics and Applications, 246–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65298-6_23.
Texto completo da fonteHenry, Peter, Michael Krainin, Evan Herbst, Xiaofeng Ren e Dieter Fox. "RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments". In Experimental Robotics, 477–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-28572-1_33.
Texto completo da fonteUrcola, P., M. T. Lorente, J. L. Villarroel e L. Montano. "Seamless Indoor-Outdoor Robust Localization for Robots". In ROBOT2013: First Iberian Robotics Conference, 275–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03653-3_21.
Texto completo da fonteBrooks, Alex, Alexei Makarenko, Tobias Kaupp, Stefan Williams e Hugh Durrant-Whyte. "Implementation of an Indoor Active Sensor Network". In Springer Tracts in Advanced Robotics, 397–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11552246_38.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Indoor robotics"
Dias, André, João J. Martins, José Antunes, André Moura e José Almeida. "MANTIS: UAV for Indoor Logistic Operations". In 2024 7th Iberian Robotics Conference (ROBOT), 1–7. IEEE, 2024. https://doi.org/10.1109/robot61475.2024.10796935.
Texto completo da fonteSheng, Diwei, Anbang Yang, John-Ross Rizzo e Chen Feng. "NYC-Indoor-VPR: A Long-Term Indoor Visual Place Recognition Dataset with Semi-Automatic Annotation". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 14853–59. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610564.
Texto completo da fonteMartins, João J., Alexandre Amaral e André Dias. "Deep Reinforcement Learning Framework for UAV Indoor Navigation". In 2024 7th Iberian Robotics Conference (ROBOT), 1–8. IEEE, 2024. https://doi.org/10.1109/robot61475.2024.10796906.
Texto completo da fonteYi, Zhaoguang, Xiangyu Wen, Qiyue Xia, Peize Li, Francisco Zampella, Firas Alsehly e Chris Xiaoxuan Lu. "Multimodal Indoor Localization Using Crowdsourced Radio Maps". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 13666–72. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610683.
Texto completo da fonteJiang, Fan, David Caruso, Ashutosh Dhekne, Qi Qu, Jakob Julian Engel e Jing Dong. "Robust Indoor Localization with Ranging-IMU Fusion". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 11963–69. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611274.
Texto completo da fonteQi, Josiah Yang, Lai Chean Hung, Hudyjaya Siswoyo Jo, Justin Sia Wei Kiat, Evon Lim Wan Ting e Michelle Dunn. "A Review of Sustainable Farming with Robotics in Indoor Greenhouse Environments". In 2024 IEEE 12th Region 10 Humanitarian Technology Conference (R10-HTC), 1–6. IEEE, 2024. https://doi.org/10.1109/r10-htc59322.2024.10778747.
Texto completo da fonteShu, Manli, Le Xue, Ning Yu, Roberto Martín-Martín, Caiming Xiong, Tom Goldstein, Juan Carlos Niebles e Ran Xu. "Hierarchical Point Attention for Indoor 3D Object Detection". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 4245–51. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610108.
Texto completo da fonteKwon, Obin, Dongki Jung, Youngji Kim, Soohyun Ryu, Suyong Yeon, Songhwai Oh e Donghwan Lee. "WayIL: Image-based Indoor Localization with Wayfinding Maps". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 6274–81. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610480.
Texto completo da fonteZeng, Jing, Yanxu Li, Jiahao Sun, Qi Ye, Yunlong Ran e Jiming Chen. "Autonomous Implicit Indoor Scene Reconstruction with Frontier Exploration". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 18041–47. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611382.
Texto completo da fonteTai, Beijia, Yangjie Wei, Guangyu Zhang, Yuqing He e Siyao Cui. "Indoor Multi-Anchor Collaborative Localization for Unmanned Systems". In 2024 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1036–41. IEEE, 2024. https://doi.org/10.1109/robio64047.2024.10907434.
Texto completo da fonteRelatórios de organizações sobre o assunto "Indoor robotics"
Mekonnen, Bisrat, Benjamin Christie, Michael Paquette e Garry Glaspell. 3D mapping and navigation using MOVEit. Engineer Research and Development Center (U.S.), junho de 2023. http://dx.doi.org/10.21079/11681/47179.
Texto completo da fonte