Artigos de revistas sobre o tema "Indoor photovoltaics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Indoor photovoltaics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ryu, Hwa Sook, Song Yi Park, Tack Ho Lee, Jin Young Kim e Han Young Woo. "Recent progress in indoor organic photovoltaics". Nanoscale 12, n.º 10 (2020): 5792–804. http://dx.doi.org/10.1039/d0nr00816h.
Texto completo da fonteChen, Chun-Hao, Zhao-Kui Wang e Liang-Sheng Liao. "Perspective on perovskite indoor photovoltaics". Applied Physics Letters 122, n.º 13 (27 de março de 2023): 130501. http://dx.doi.org/10.1063/5.0147747.
Texto completo da fonteZhang, Yue, Chunhui Duan e Liming Ding. "Indoor organic photovoltaics". Science Bulletin 65, n.º 24 (dezembro de 2020): 2040–42. http://dx.doi.org/10.1016/j.scib.2020.08.030.
Texto completo da fonteAoki, Yoichi. "Photovoltaic performance of Organic Photovoltaics for indoor energy harvester". Organic Electronics 48 (setembro de 2017): 194–97. http://dx.doi.org/10.1016/j.orgel.2017.05.023.
Texto completo da fonteWang, Peng, Wei Wang, Ling Jia, Chenglong Wang, Wendi Zhang e Lei Huang. "APPLICATION ANALYSIS OF PHOTOVOLTAIC INTEGRATED SHADING DEVICES CONSIDERING INDOOR ENVIRONMENT AND ENERGY CHANGE IN GREEN BUILDINGS". Journal of Green Building 19, n.º 3 (1 de agosto de 2024): 71–90. http://dx.doi.org/10.3992/jgb.19.3.71.
Texto completo da fontePeng, Yueheng, Tahmida N. Huq, Jianjun Mei, Luis Portilla, Robert A. Jagt, Luigi G. Occhipinti, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye e Vincenzo Pecunia. "Indoor Photovoltaics: Lead‐Free Perovskite‐Inspired Absorbers for Indoor Photovoltaics (Adv. Energy Mater. 1/2021)". Advanced Energy Materials 11, n.º 1 (janeiro de 2021): 2170005. http://dx.doi.org/10.1002/aenm.202170005.
Texto completo da fonteKim, Soyeon, Muhammad Jahandar, Jae Hoon Jeong e Dong Chan Lim. "Recent Progress in Solar Cell Technology for Low-Light Indoor Applications". Current Alternative Energy 3, n.º 1 (28 de novembro de 2019): 3–17. http://dx.doi.org/10.2174/1570180816666190112141857.
Texto completo da fonteAlkhalayfeh, Muheeb Ahmad, Azlan Abdul Aziz, Mohd Zamir Pakhuruddin, Khadijah Mohammedsaleh M. Katubi e Neda Ahmadi. "Recent Development of Indoor Organic Photovoltaics". physica status solidi (a) 219, n.º 5 (26 de dezembro de 2021): 2100639. http://dx.doi.org/10.1002/pssa.202100639.
Texto completo da fonteFeng, Mingjie, Chuantian Zuo, Ding-Jiang Xue, Xianhu Liu e Liming Ding. "Wide-bandgap perovskites for indoor photovoltaics". Science Bulletin 66, n.º 20 (outubro de 2021): 2047–49. http://dx.doi.org/10.1016/j.scib.2021.07.012.
Texto completo da fonteZiuku, Sosten, e Edson L. Meyer. "Electrical performance results of an energy efficient building with an integrated photovoltaic system". Journal of Energy in Southern Africa 21, n.º 3 (1 de agosto de 2010): 2–8. http://dx.doi.org/10.17159/2413-3051/2010/v21i3a3254.
Texto completo da fonteMasoudinejad, Mojtaba. "Data-Sets for Indoor Photovoltaic Behavior in Low Lighting Conditions". Data 5, n.º 2 (28 de março de 2020): 32. http://dx.doi.org/10.3390/data5020032.
Texto completo da fonteVincent, Premkumar, Jae Won Shim, Jaewon Jang, In Man Kang, Philippe Lang, Jin-Hyuk Bae e Hyeok Kim. "The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells". Energies 12, n.º 10 (15 de maio de 2019): 1838. http://dx.doi.org/10.3390/en12101838.
Texto completo da fonteBiswas, Swarup, Yongju Lee, Hyojeong Choi, Hyeong Won Lee e Hyeok Kim. "Progress in organic photovoltaics for indoor application". RSC Advances 13, n.º 45 (2023): 32000–32022. http://dx.doi.org/10.1039/d3ra02599c.
Texto completo da fonteLee, Harrison K. H., Zhe Li, James R. Durrant e Wing C. Tsoi. "Is organic photovoltaics promising for indoor applications?" Applied Physics Letters 108, n.º 25 (20 de junho de 2016): 253301. http://dx.doi.org/10.1063/1.4954268.
Texto completo da fonteLi, Meng, Femi Igbari, Zhao‐Kui Wang e Liang‐Sheng Liao. "Indoor Thin‐Film Photovoltaics: Progress and Challenges". Advanced Energy Materials 10, n.º 28 (9 de junho de 2020): 2000641. http://dx.doi.org/10.1002/aenm.202000641.
Texto completo da fonteMularso, Kelvian T., Ji-Young Jeong, Gill Sang Han e Hyun Suk Jung. "Recent Strategies for High-Performing Indoor Perovskite Photovoltaics". Nanomaterials 13, n.º 2 (7 de janeiro de 2023): 259. http://dx.doi.org/10.3390/nano13020259.
Texto completo da fonteHo, Johnny Ka Wai, Hang Yin e Shu Kong So. "From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics". Journal of Materials Chemistry A 8, n.º 4 (2020): 1717–23. http://dx.doi.org/10.1039/c9ta11894b.
Texto completo da fonteCutting, Christie L., Monojit Bag e D. Venkataraman. "Indoor light recycling: a new home for organic photovoltaics". Journal of Materials Chemistry C 4, n.º 43 (2016): 10367–70. http://dx.doi.org/10.1039/c6tc03344j.
Texto completo da fonteWajidh, Mohamed Nafeer, Nour Attallah Issa, Kam Sheng Lau, Sin Tee Tan, Chin Hua Chia, Muslizainun Mustapha, Mohammad Hafizuddin Hj Jumali e Chi Chin Yap. "Enhancing Indoor Photovoltaic Performance of Inverted Type Organic Solar Cell by Controlling Photoactive Layer Solution Concentration". Sains Malaysiana 53, n.º 10 (31 de outubro de 2024): 3511–20. http://dx.doi.org/10.17576/jsm-2024-5310-23.
Texto completo da fonteTorimtubun, Alfonsina Abat Amelenan, José G. Sánchez, Josep Pallarès e Lluis F. Marsal. "A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics". Sustainable Energy & Fuels 4, n.º 7 (2020): 3378–87. http://dx.doi.org/10.1039/d0se00353k.
Texto completo da fonteXu, Xiang, Wei Liu, Xiaoyan Luo, Hongbo Chen, Qingya Wei, Jun Yuan e Yingping Zou. "An Overview of High‐Performance Indoor Organic Photovoltaics". ChemSusChem 14, n.º 17 (26 de junho de 2021): 3428–48. http://dx.doi.org/10.1002/cssc.202100386.
Texto completo da fontePark, Song Yi, Chiara Labanti, Joel Luke, Yi‐Chun Chin e Ji‐Seon Kim. "Organic Bilayer Photovoltaics for Efficient Indoor Light Harvesting". Advanced Energy Materials 12, n.º 3 (15 de dezembro de 2021): 2103237. http://dx.doi.org/10.1002/aenm.202103237.
Texto completo da fonteGhosh, Paheli, Jochen Bruckbauer, Carol Trager-Cowan e Lethy Krishnan Jagadamma. "Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics". Applied Surface Science 592 (agosto de 2022): 152865. http://dx.doi.org/10.1016/j.apsusc.2022.152865.
Texto completo da fonteSrivishnu, K. S., Manne Naga Rajesh, Seelam Prasanthkumar e Lingamallu Giribabu. "Photovoltaics for indoor applications: Progress, challenges and perspectives". Solar Energy 264 (novembro de 2023): 112057. http://dx.doi.org/10.1016/j.solener.2023.112057.
Texto completo da fonteOtsuka, Munechika, Yuki Kurokawa, Yi Ding, Firman Bagja Juangsa, Shogo Shibata, Takehito Kato e Tomohiro Nozaki. "Silicon nanocrystal hybrid photovoltaic devices for indoor light energy harvesting". RSC Advances 10, n.º 21 (2020): 12611–18. http://dx.doi.org/10.1039/d0ra00804d.
Texto completo da fonteLiu, I. Ping, Yu-Syuan Cho, Hsisheng Teng e Yuh-Lang Lee. "Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%". Journal of Materials Chemistry A 8, n.º 42 (2020): 22423–33. http://dx.doi.org/10.1039/d0ta07603a.
Texto completo da fonteArai, Ryota, Seiichi Furukawa, Narumi Sato e Takuma Yasuda. "Organic energy-harvesting devices achieving power conversion efficiencies over 20% under ambient indoor lighting". Journal of Materials Chemistry A 7, n.º 35 (2019): 20187–92. http://dx.doi.org/10.1039/c9ta06694b.
Texto completo da fonteHou, Xueyan, Yiwen Wang, Harrison Ka Hin Lee, Ram Datt, Nicolas Uslar Miano, Dong Yan, Meng Li et al. "Indoor application of emerging photovoltaics—progress, challenges and perspectives". Journal of Materials Chemistry A 8, n.º 41 (2020): 21503–25. http://dx.doi.org/10.1039/d0ta06950g.
Texto completo da fonteLiu, Xinlu, Ruiyu Tian, Zedong Xiong, Yang Liu e Yinhua Zhou. "Theoretical efficiency limit and realistic losses of indoor organic and perovskite photovoltaics [Invited]". Chinese Optics Letters 21, n.º 12 (2023): 120031. http://dx.doi.org/10.3788/col202321.120031.
Texto completo da fonteOpoku, Henry, Yun Hoo Kim, Ji Hyeon Lee, Hyungju Ahn, Jae-Joon Lee, Se-Woong Baek e Jea Woong Jo. "A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics". Journal of Materials Chemistry A 9, n.º 27 (2021): 15294–300. http://dx.doi.org/10.1039/d1ta03577k.
Texto completo da fonteGoo, Ji Soo, Jung-Hoon Lee, Sang-Chul Shin, Jin-Seong Park e Jae Won Shim. "Undoped ZnO electrodes for low-cost indoor organic photovoltaics". Journal of Materials Chemistry A 6, n.º 46 (2018): 23464–72. http://dx.doi.org/10.1039/c8ta08432g.
Texto completo da fonteLiu, I.-Ping, Yu-Syuan Cho, Hsisheng Teng e Yuh-Lang Lee. "Correction: Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%". Journal of Materials Chemistry A 8, n.º 45 (2020): 24214. http://dx.doi.org/10.1039/d0ta90261f.
Texto completo da fonteDing, Zicheng, Ruyan Zhao, Yingjian Yu e Jun Liu. "All-polymer indoor photovoltaics with high open-circuit voltage". Journal of Materials Chemistry A 7, n.º 46 (2019): 26533–39. http://dx.doi.org/10.1039/c9ta10040g.
Texto completo da fonteXie, Lin, Wei Song, Jinfeng Ge, Bencan Tang, Xiaoli Zhang, Tao Wu e Ziyi Ge. "Recent progress of organic photovoltaics for indoor energy harvesting". Nano Energy 82 (abril de 2021): 105770. http://dx.doi.org/10.1016/j.nanoen.2021.105770.
Texto completo da fonteMuhammad, Bening Tirta, Shaoni Kar, Meera Stephen e Wei Lin Leong. "Halide perovskite-based indoor photovoltaics: recent development and challenges". Materials Today Energy 23 (janeiro de 2022): 100907. http://dx.doi.org/10.1016/j.mtener.2021.100907.
Texto completo da fonteChen, Chia-Yuan, Zih-Hong Jian, Shih-Han Huang, Kun-Mu Lee, Ming-Hsuan Kao, Chang-Hong Shen, Jia-Min Shieh et al. "Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting". Journal of Physical Chemistry Letters 8, n.º 8 (10 de abril de 2017): 1824–30. http://dx.doi.org/10.1021/acs.jpclett.7b00515.
Texto completo da fonteCorazza, Michael, Frederik C. Krebs e Suren A. Gevorgyan. "Lifetime of organic photovoltaics: Linking outdoor and indoor tests". Solar Energy Materials and Solar Cells 143 (dezembro de 2015): 467–72. http://dx.doi.org/10.1016/j.solmat.2015.07.037.
Texto completo da fonteShin, Sang-Chul, Young-Jun You, Ji Soo Goo e Jae Won Shim. "In-depth interfacial engineering for efficient indoor organic photovoltaics". Applied Surface Science 495 (novembro de 2019): 143556. http://dx.doi.org/10.1016/j.apsusc.2019.143556.
Texto completo da fonteYan, Nanfu, Chaowei Zhao, Shengyong You, Yuefeng Zhang e Weiwei Li. "Recent progress of thin-film photovoltaics for indoor application". Chinese Chemical Letters 31, n.º 3 (março de 2020): 643–53. http://dx.doi.org/10.1016/j.cclet.2019.08.022.
Texto completo da fonteLIM, Dong Chan. "Artificial Light Driven Power Generation and IoT Device Convergence". Physics and High Technology 30, n.º 10 (29 de outubro de 2021): 2–12. http://dx.doi.org/10.3938/phit.30.030.
Texto completo da fonteYou, Young-Jun, Chang Eun Song, Quoc Viet Hoang, Yoonmook Kang, Ji Soo Goo, Doo-Hyun Ko, Jae-Joon Lee, Won Suk Shin e Jae Won Shim. "Indoor Organic Photovoltaics: Highly Efficient Indoor Organic Photovoltaics with Spectrally Matched Fluorinated Phenylene-Alkoxybenzothiadiazole-Based Wide Bandgap Polymers (Adv. Funct. Mater. 27/2019)". Advanced Functional Materials 29, n.º 27 (julho de 2019): 1970183. http://dx.doi.org/10.1002/adfm.201970183.
Texto completo da fonteJagadamma, Lethy Krishnan, e Shaoyang Wang. "Wide-Bandgap Halide Perovskites for Indoor Photovoltaics". Frontiers in Chemistry 9 (26 de março de 2021). http://dx.doi.org/10.3389/fchem.2021.632021.
Texto completo da fonteYan, Bin, Xinsheng Liu, Wenbo Lu, Mingjie Feng, Hui-Juan Yan, Zongbao Li, Shunchang Liu, Cong Wang, Jin-Song Hu e Ding-Jiang Xue. "Indoor photovoltaics awaken the world’s first solar cells". Science Advances 8, n.º 49 (9 de dezembro de 2022). http://dx.doi.org/10.1126/sciadv.adc9923.
Texto completo da fonteWei, Zhouqing, Wenbo Lu, Zongbao Li, Mingjie Feng, Bin Yan, Jin-Song Hu e Ding-Jiang Xue. "Low-cost and high-performance selenium indoor photovoltaics". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta04530g.
Texto completo da fonteJiang, Xueshi, Bernhard Siegmund e Koen Vandewal. "Organic indoor PV: Vanishing surface recombination allows for robust device architecture". Materials Horizons, 2024. http://dx.doi.org/10.1039/d4mh00340c.
Texto completo da fonteLi, Chen, Haoxuan Sun, Da Dou, Shan Gan e Liang Li. "Bipolar Pseudohalide Ammonium Salts Bridged Perovskite Buried Interface toward Efficient Indoor Photovoltaics". Advanced Energy Materials, 4 de junho de 2024. http://dx.doi.org/10.1002/aenm.202401883.
Texto completo da fonteDatt, Ram, Pietro Caprioglio, Saqlain Choudhary, Weixia Lan, Henry J. Snaith e Wing Chung Tsoi. "Engineered charge transport layers for improving indoor perovskite photovoltaic performance". Journal of Physics: Energy, 8 de março de 2024. http://dx.doi.org/10.1088/2515-7655/ad31bb.
Texto completo da fonteWang, Shaoyang, Byeong-Cheol Kang, Sang-Joon Park, Tae-Jun Ha e Lethy Krishnan Jagadamma. "P3HT vs Spiro-OMeTAD as a hole transport layer for halide perovskite indoor photovoltaics and self-powering of motion sensors". Journal of Physics: Materials, 5 de abril de 2023. http://dx.doi.org/10.1088/2515-7639/accaaa.
Texto completo da fonteBulloch, Alasdair, Shaoyang Wang, Paheli Ghosh e Lethy Krishnan Jagadamma. "Hysteresis in hybrid perovskite indoor photovoltaics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, n.º 2221 (28 de fevereiro de 2022). http://dx.doi.org/10.1098/rsta.2021.0144.
Texto completo da fonteChakraborty, Abhisek, Giulia Lucarelli, Jie Xu, Zeynab Skafi, Sergio Castro-Hermosa, A. B. Kaveramma, R. Geetha Balakrishna e Thomas M. Brown. "Photovoltaics for Indoor Energy Harvesting". Nano Energy, junho de 2024, 109932. http://dx.doi.org/10.1016/j.nanoen.2024.109932.
Texto completo da fonte