Literatura científica selecionada sobre o tema "In-yeast genome cloning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "In-yeast genome cloning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "In-yeast genome cloning"
Erickson, J. R., e M. Johnston. "Direct cloning of yeast genes from an ordered set of lambda clones in Saccharomyces cerevisiae by recombination in vivo." Genetics 134, n.º 1 (1 de maio de 1993): 151–57. http://dx.doi.org/10.1093/genetics/134.1.151.
Texto completo da fonteZhang, Jiantao, Zsigmond Benko, Chenyu Zhang e Richard Y. Zhao. "Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast (Schizosaccharomyces pombe)". Pathogens 13, n.º 7 (4 de julho de 2024): 566. http://dx.doi.org/10.3390/pathogens13070566.
Texto completo da fonteSclafani, Robert A., e Walton L. Fangman. "THYMIDINE UTILIZATION BY tut MUTANTS AND FACILE CLONING OF MUTANT ALLELES BY PLASMID CONVERSION IN S. CEREVISIAE". Genetics 114, n.º 3 (1 de novembro de 1986): 753–67. http://dx.doi.org/10.1093/genetics/114.3.753.
Texto completo da fonteHiltunen, J. K., F. Okubo, V. A. S. Kursu, K. J. Autio e A. J. Kastaniotis. "Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast". Biochemical Society Transactions 33, n.º 5 (26 de outubro de 2005): 1162–65. http://dx.doi.org/10.1042/bst0331162.
Texto completo da fonteZhang, Xiao-Ran, Jia-Bei He, Yi-Zheng Wang e Li-Lin Du. "A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast". G3: Genes|Genomes|Genetics 8, n.º 6 (27 de abril de 2018): 2067–77. http://dx.doi.org/10.1534/g3.118.200164.
Texto completo da fonteLeppert, G., R. McDevitt, S. C. Falco, T. K. Van Dyk, M. B. Ficke e J. Golin. "Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces." Genetics 125, n.º 1 (1 de maio de 1990): 13–20. http://dx.doi.org/10.1093/genetics/125.1.13.
Texto completo da fonteMülleder, Michael, Kate Campbell, Olga Matsarskaia, Florian Eckerstorfer e Markus Ralser. "Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities". F1000Research 5 (20 de setembro de 2016): 2351. http://dx.doi.org/10.12688/f1000research.9606.1.
Texto completo da fonteKuspa, A., D. Vollrath, Y. Cheng e D. Kaiser. "Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes." Proceedings of the National Academy of Sciences 86, n.º 22 (1 de novembro de 1989): 8917–21. http://dx.doi.org/10.1073/pnas.86.22.8917.
Texto completo da fonteHanekamp, Theodor, Mary K. Thorsness, Indrani Rebbapragada, Elizabeth M. Fisher, Corrine Seebart, Monica R. Darland, Jennifer A. Coxbill, Dustin L. Updike e Peter E. Thorsness. "Maintenance of Mitochondrial Morphology Is Linked to Maintenance of the Mitochondrial Genome in Saccharomyces cerevisiae". Genetics 162, n.º 3 (1 de novembro de 2002): 1147–56. http://dx.doi.org/10.1093/genetics/162.3.1147.
Texto completo da fonteAndleeb, S., F. Latif, S. Afzal, Z. Mukhtar, S. Mansoor e I. Rajoka. "CLONING AND EXPRESSION OF CHAETOMIUM THERMOPHILUM XYLANASE 11-A GENE IN PICHIA PASTORIS". Nucleus 45, n.º 1-2 (1 de julho de 2020): 75–81. https://doi.org/10.71330/nucleus.45.01-2.1001.
Texto completo da fonteTeses / dissertações sobre o assunto "In-yeast genome cloning"
Barret, Julien. "Clonage, ingénierie et transfert de grands fragments de génome chez Bacillus subtilis". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0458.
Texto completo da fonteGenome engineering of microorganisms has become a standard in microbial biotechnology. In 2010, promising synthetic biology technologies using yeast as a platform for the assembly and engineering of synthetic bacterial genomes followed by their transplantation into a recipient cell have emerged. These technologies have led to the creation of the first synthetic cells and opened new avenues towards the construction of cells with fully controlled biological properties. Transferring these tools to microorganisms of industrial interest such as the Gram+ bacterium Bacillus subtilis (Bsu), a model in the biotechnology sector, would be a major step forward. This is precisely the aim of the ANR "Bacillus 2.0" project, which brings together two INRAE teams and aims to adapt all these synthetic biology tools to Bsu so as to be able to go from computer-aided design of semi-synthetic Bsu genomes to the production of new industrial strains. However, initial work on this project showed that the entire Bsu genome could not be cloned and maintained in yeast in its current state. These results threatened to call into question the feasibility of the entire project and, in particular, the relevance of using yeast as a platform for assembling the semi-synthetic Bsu genome.The goal of my thesis was to demonstrate that yeast remained a relevant host for the Bacillus 2.0 project. It was divided into 3 parts. In the first part, a genome cloning method recently developed in the laboratory, called CReasPy-Fusion, was progressively adapted to Bsu. The results obtained showed (i) the possible transfer of plasmid DNA between bacterial protoplasts and yeast spheroplasts, (ii) the efficiency of a CRISPR-Cas9 system carried by yeast cells to capture/modify this plasmid DNA during Bsu/yeast fusion, and then (iii) the efficiency of the same system to capture genomic fragments of about a hundred kb from three different strains. Fluorescence microscopy observations were also carried out revealing two types of interaction that would enable the transition from protoplast/spheroplast contact to cloned bacterial DNA in yeast. In the second part of my thesis, the CReasPy-Fusion method was used in an attempt to clone large Bsu genome fragments in yeast. Genomic fragments of up to ~1 Mb could be cloned in yeast, but their capture required the prior addition of a large number of ARS to the Bsu genome to stabilize the genetic constructs. The final part was the adaptation of the RAGE method to Bsu. This method allow the transfer, not of a whole genome, but of portions of bacterial genomes from yeast to the bacteria to be edited. Proof of concept was achieved by exchanging a 155 kb genome fragment with a reduced 44 kb version.In conclusion, the work carried out during this thesis has shown the relevance of using yeast as an engineering platform for large-scale modifications of the Bsu genome. On the one hand, we have shown that fragments of around 100 kb can be cloned in yeast, modified and transferred into a recipient cell to generate Bsu mutants. This strategy offers a real alternative to genome transplantation. On the other hand, we have shown that large fragments of the Bsu genome (up to 1 Mb) can also be cloned in yeast, provided they contain numerous ARS in their sequences. Thanks to these results, cloning a reduced Bsu genome in yeast has once again become an achievable goal
Capítulos de livros sobre o assunto "In-yeast genome cloning"
Li, Ge, e Richard Y. Zhao. "Molecular Cloning and Characterization of Small Viral Genome in Fission Yeast". In Methods in Molecular Biology, 47–61. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7546-4_5.
Texto completo da fonteBenders, Gwynedd A. "Cloning Whole Bacterial Genomes in Yeast". In Methods in Molecular Biology, 165–80. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-564-0_13.
Texto completo da fonteGolemis, Erica A., Ilya Serebriiskii e Susan F. Law. "Adjustment of Parameters in the Yeast Two-Hybrid System". In Gene Cloning and Analysis, 11–28. London: Garland Science, 2023. http://dx.doi.org/10.1201/9781003421474-1.
Texto completo da fonteBaykov, Ivan, Olga Kurchenko, Ekaterina Mikhaylova, Vera V. Morozova e Nina V. Tikunova. "Robust and Reproducible Protocol for Phage Genome “Rebooting” Using Transformation-Associated Recombination (TAR) Cloning into Yeast Centromeric Plasmid". In Methods in Molecular Biology, 301–17. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3523-0_19.
Texto completo da fonteOugen, P., e D. Cohen. "Yeast artificial chromosomes cloning using PFGE". In Pulsed Field Gel Electrophoresis, 95–118. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199635368.003.0005.
Texto completo da fonteAnand, Rak Esh. "Cloning into yeast artificial chromosomes". In DNA Cloning 3, 103–28. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634835.003.0004.
Texto completo da fonteDear, Paul H. "Happy mapping". In Genome Mapping, 95–124. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780199636310.003.0005.
Texto completo da fonteIvens, Alasdair c., e Peter F. R. Little. "Cosmid clones and their application to genome studies". In DNA Cloning 3, 1–48. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634835.003.0001.
Texto completo da fonteSikorski, Roberts, Jill B. Keeney, e Jef D. Boeke. "Plasmid shuffling and mutant isolation". In Molecular Genetics of Yeast, 97–110. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199634309.003.0006.
Texto completo da fonteNewman, Andrew. "Analysis of pre-mRNA splicing in yeast". In RNA Processing, 179–95. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780199633449.003.0006.
Texto completo da fonteRelatórios de organizações sobre o assunto "In-yeast genome cloning"
Droby, Samir, Michael Wisniewski, Martin Goldway, Wojciech Janisiewicz e Charles Wilson. Enhancement of Postharvest Biocontrol Activity of the Yeast Candida oleophila by Overexpression of Lytic Enzymes. United States Department of Agriculture, novembro de 2003. http://dx.doi.org/10.32747/2003.7586481.bard.
Texto completo da fonteWagner, D. Ry, Eliezer Lifschitz e Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, maio de 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Texto completo da fonte