Literatura científica selecionada sobre o tema "Implosion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Implosion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Implosion"
Dewald, E. L., S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D. M. Ho, C. V. Young et al. "First graded metal pushered single shell capsule implosions on the National Ignition Facility". Physics of Plasmas 29, n.º 5 (maio de 2022): 052707. http://dx.doi.org/10.1063/5.0083089.
Texto completo da fonteChoe, W. H., e R. C. Venkatesan. "Self-similar solutions of screw-pinch plasma implosion". Laser and Particle Beams 8, n.º 3 (setembro de 1990): 485–91. http://dx.doi.org/10.1017/s0263034600008727.
Texto completo da fonteLindl, John D., Steven W. Haan e Otto L. Landen. "Impact of hohlraum cooling on ignition metrics for inertial fusion implosions". Physics of Plasmas 30, n.º 1 (janeiro de 2023): 012705. http://dx.doi.org/10.1063/5.0113138.
Texto completo da fonteManheimer, W., e D. Colombant. "Effects of viscosity in modeling laser fusion implosions". Laser and Particle Beams 25, n.º 4 (dezembro de 2007): 541–47. http://dx.doi.org/10.1017/s0263034607000663.
Texto completo da fonteBaker, K. L., O. Jones, C. Weber, D. Clark, P. K. Patel, C. A. Thomas, O. L. Landen et al. "Hydroscaling indirect-drive implosions on the National Ignition Facility". Physics of Plasmas 29, n.º 6 (junho de 2022): 062705. http://dx.doi.org/10.1063/5.0080732.
Texto completo da fonteLi, Chuanying, Jianfa Gu, Fengjun Ge, Zhensheng Dai e Shiyang Zou. "Impact of different electron thermal conductivity models on the performance of cryogenic implosions". Physics of Plasmas 29, n.º 4 (abril de 2022): 042702. http://dx.doi.org/10.1063/5.0066708.
Texto completo da fonteRoycroft, R., J. P. Sauppe e P. A. Bradley. "Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF". Physics of Plasmas 29, n.º 3 (março de 2022): 032704. http://dx.doi.org/10.1063/5.0083190.
Texto completo da fonteBarlow, D., T. Goffrey, K. Bennett, R. H. H. Scott, K. Glize, W. Theobald, K. Anderson et al. "Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility". Physics of Plasmas 29, n.º 8 (agosto de 2022): 082704. http://dx.doi.org/10.1063/5.0097080.
Texto completo da fonteNishimura, H., H. Shiraga, T. Endo, H. Takabe, M. Katayama, Y. Oshikane, M. Nakamura, Y. Kato e S. Nakai. "Radiation-driven cannonball targets for high-convergence implosions". Laser and Particle Beams 11, n.º 1 (março de 1993): 89–96. http://dx.doi.org/10.1017/s0263034600006947.
Texto completo da fonteChristopherson, A. R., R. Betti, C. J. Forrest, J. Howard, W. Theobald, E. M. Campbell, J. Delettrez et al. "Inferences of hot electron preheat and its spatial distribution in OMEGA direct drive implosions". Physics of Plasmas 29, n.º 12 (dezembro de 2022): 122703. http://dx.doi.org/10.1063/5.0091220.
Texto completo da fonteTeses / dissertações sobre o assunto "Implosion"
Gish, Lynn Andrew. "Analytic and numerical study of underwater implosion". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81699.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 203-205).
Underwater implosion, the rapid collapse of a structure caused by external pressure, generates a pressure pulse in the surrounding water that is potentially damaging to adjacent structures or personnel. Understanding the mechanics of implosion, specifically the energy transmitted in the pressure pulse, is critical to the safe and efficient design of underwater structures. Hydrostatically-induced implosion of unstiffened metallic cylinders was studied both analytically and numerically. An energy balance approach was used, based on the principle of virtual velocities. Semi-analytic solutions were developed for plastic energy dissipation of a symmetric mode 2 collapse; results agree with numerical simulations within 10%. A novel pseudo-coupled fluid-structure interaction method was developed to predict the energy transmitted in the implosion pulse; results agree with fully-coupled numerical simulations within 6%. The method provides a practical alternative to computationally-expensive simulations when a minimal reduction in accuracy is acceptable. Three design recommendations to reduce the severity of implosion are presented: (1) increase the structure's internal energy dissipation by triggering higher collapse modes, (2) initially pressurize the internals of the structure, and (3) line the cylinder with a flexible or energy absorbing material to cushion the impact between the structure's imploding walls. These recommendations may be used singly or in combination to reduce or completely eliminate the implosion pulse. However, any design efforts to reduce implosion severity must be part of the overall system design, since they may have detrimental effects on other performance areas like strength or survivability.
by Lynn Andrew Gish.
Ph.D.
Scardigli, Corinne. "Implosion : gestion des stocks par la replanification amont". Grenoble INPG, 1994. http://www.theses.fr/1994INPG0057.
Texto completo da fonteKrueger, Seth R. "Simulation of cylinder implosion initiated by an underwater explosion". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FKrueger.pdf.
Texto completo da fonteThesis Advisor(s): Young S. Shin. "June 2006." Includes bibliographical references (p. 99-100). Also available in print.
Szirti, Daniel. "Development of a single-stage implosion-driven hypervelocity launcher". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112585.
Texto completo da fonteSigley, Thomas E. "Evangelism implosion getting to the heart of the issue /". Theological Research Exchange Network (TREN), 1997. http://www.tren.com.
Texto completo da fonteKinnear, Timothy Michael. "Investigation into triggered star formation by radiative driven implosion". Thesis, University of Kent, 2016. https://kar.kent.ac.uk/52436/.
Texto completo da fonteSmith, Joel Aaron. "Implosion of steel fibre reinforced concrete cylinders under hydrostatic pressure". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ45939.pdf.
Texto completo da fonteCardoso, Pedro Daniel Martins Lucas. "The future of old-age pensions its explosion and implosion /". [Amsterdam : Amsterdam : Thela Thesis] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/76523.
Texto completo da fonteLoiseau, Jason. "Phase velocity techniques for the implosion of pressurized linear drivers". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94919.
Texto completo da fonteL'étude présente porte sur l'évaluation de plusieurs techniques pour générer une vitesse de phase dans un explosif afin de produire de très hautes vitesses de détonation sur des cibles linéaires ou cylindriques. En particulier, il a été démontré que le jumelage de deux composantes explosives ayant des vitesses de détonation différentes pour faire glisser une onde de détonation structurée est une méthode pouvant précisément générer des vitesses de phase désirées. La méthode de la division d'une onde de détonation dans plusieurs canaux individuels fut évaluée et il fut démontré qu'elle est aussi précise. Des modèles analytiques pour la conception des composantes explosives nécessaires à la production des vitesses de phase désirées en utilisant ces techniques sont présentés en détail. Une nouvelle méthode pour générer une vitesse de phase axisymétrique, implosive et linéaire a été également mise au point en faisant varier l'épaisseur de la paroi d'un tube métallique cylindrique. Il fut démontré que cet appareil est capable de produire des vitesses de phase, mais avec des écarts importants avec les prévisions analytiques. La technique qui utilise les deux composantes a également été appliquée à un tube à chocs explosif linéaire. Le tube à chocs a été construit à partir d'un tube métallique à parois mince et entouré par un anneau mince d'explosifs puis un tube de métal à parois épaisse. L'onde de détonation a été progressivement injectée par une mince fente dans le haut du tube à parois épaisse. Une onde de choc a été entraînée à des vitesses allant jusqu'à 11~km/s avec cet appareil.
Rallu, Arthur Seiji Daniel. "A multiphase fluid-structure computational framework for underwater implosion problems /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completo da fonteLivros sobre o assunto "Implosion"
Temple, L. Parker. Implosion. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118487105.
Texto completo da fonte(Group), Zadig. L' implosion française. Paris: A. Michel, 1992.
Encontre o texto completo da fonteFunabashi, Yoichi, ed. Japan’s Population Implosion. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4983-5.
Texto completo da fonteMaking China: Cultural implosion. [Beijing?]: Shi jie hua ren yi shu chu ban she, 2002.
Encontre o texto completo da fonteLindner, Gabriele. Die Eigenart der Implosion. Berlin: Kolog-Verl., 1994.
Encontre o texto completo da fonteRick, Poynor, ed. Typography now two: Implosion. London: Booth-Clibborn Editions, 1998.
Encontre o texto completo da fonteL' implosion du monde. Paris: la Différence, 2007.
Encontre o texto completo da fonteDalla Longa, Remo. Globalization and Urban Implosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70512-3.
Texto completo da fonteThe implosion of American federalism. Oxford: Oxford University Press, 2001.
Encontre o texto completo da fonteWlasenko, Olexander. Energy implosion: The (905) imagination. Oshawa, Ont: Robert McLaughlin Gallery, 2001.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Implosion"
Bakardjieva, Maria. "Home Implosion". In Happiness and Domestic Life, 57–72. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003265702-7.
Texto completo da fonteStrauss, Wolfgang, e Monika Fleischmann. "Implosion of Numbers". In Disappearing Architecture, 118–31. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7674-0_10.
Texto completo da fontede Jong, Thimon. "Implosion of Trust". In Future Human Behavior, 50–52. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003227144-10.
Texto completo da fonteWeidenfeld, Ursula. "Implosion einer Krisenkanzlerin?" In Zeitenwende, 127–35. Göttingen: Vandenhoeck & Ruprecht, 2022. http://dx.doi.org/10.13109/9783666800351.127.
Texto completo da fonteJarausch, Konrad H. "Implosion oder Selbstbefreiung?" In Deutsche Umbrüche im 20. Jahrhundert, 543–66. Köln: Böhlau Verlag, 2000. http://dx.doi.org/10.7788/boehlau.9783412319687.543.
Texto completo da fonteHidekazu, Inagawa. "Introduction". In Japan’s Population Implosion, 1–25. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_1.
Texto completo da fonteKiyoto, Matsuda, Arai Junji e Nagao Takashi. "Countering Falling Regional Population with Business". In Japan’s Population Implosion, 197–215. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_10.
Texto completo da fonteFunabashi, Yoichi. "Policy Proposals". In Japan’s Population Implosion, 217–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_11.
Texto completo da fonteFumihiko, Seta, Otake Hiroshi e Umeyama Goro. "The Greater Tokyo Shock". In Japan’s Population Implosion, 27–49. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_2.
Texto completo da fonteChikako, Igarashi, Akiyama Yuki e Kamiya Kenichi. "A Collapse in Regional Infrastructure". In Japan’s Population Implosion, 51–78. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Implosion"
Seporaitis, Marijus, Raimondas Pabarcius e Kazys Almenas. "Study of Controlled Condensation Implosion Events". In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22448.
Texto completo da fonteChannell, P. J. "Radial implosion acceleration". In AIP Conference Proceedings Volume 130. AIP, 1985. http://dx.doi.org/10.1063/1.35277.
Texto completo da fonteMuttaqie, Teguh, Jung-Min Sohn, Sang-Rai Cho, Sang-Hyun Park, Gulgi Choi, Soonhung Han, Phill-Seung Lee e Yoon Sik Cho. "Implosion Tests of Aluminium Alloy Tubes Under External Hydrostatic Pressure". In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77375.
Texto completo da fonteKullberg, C. M. "A Method for Estimating Acoustic Implosion Efficiencies for Collapsing Cavities in Nuclear Reactor Systems". In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1130.
Texto completo da fonteBaksht, R. B., I. M. Datsko, A. V. Luchinsky, V. I. Oreshkin, A. V. Fedyunin, Yu D. Korolev, I. A. Shemyakin, V. G. Rabotkin, Malcolm Haines e Andrew Knight. "Implosion of Multilayer Liners". In DENSE Z-PINCHES: Third International Conference. AIP, 1994. http://dx.doi.org/10.1063/1.2949179.
Texto completo da fonteWang, Kevin G., Patrick Lea, Alex Main, Owen McGarity e Charbel Farhat. "Predictive Simulation of Underwater Implosion: Coupling Multi-Material Compressible Fluids With Cracking Structures". In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23341.
Texto completo da fonteWoelke, Pawel, Margaret Tang, Scott McClennan, Najib Abboud, Darren Tennant, Adam Hapij e Mohammed Ettouney. "Impact Mitigation for Buried Structures: Demolition of the New Haven Veterans Memorial Coliseum". In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26817.
Texto completo da fonteBaum, Carl E. "Electromagnetic Implosion Using an Array". In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345579.
Texto completo da fonteBaum, Carl E. "Electromagnetic implosion using an array". In 2007 IEEE International Pulsed Power Plasma Science Conference (PPPS 2007). IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4651846.
Texto completo da fonteCheng, Xingxing, Baosheng Jin e Wenqi Zhong. "Numerical Simulation of Boiler Implosion". In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918535.
Texto completo da fonteRelatórios de organizações sobre o assunto "Implosion"
Gocharov, V., e O. Hurricane. Panel 3 Report: Implosion Hydrodynamics. Office of Scientific and Technical Information (OSTI), junho de 2012. http://dx.doi.org/10.2172/1078544.
Texto completo da fonteCable, M. D., S. P. Hatchett, M. B. Nelson, R. A. Lerche, T. J. Murphy e D. B. Ress. High density implosion experiments at Nova. Office of Scientific and Technical Information (OSTI), fevereiro de 1994. http://dx.doi.org/10.2172/10146659.
Texto completo da fonteKline, John L. Pre-shot viewgraphs for first DT layered Beryllium Implosion. Office of Scientific and Technical Information (OSTI), julho de 2015. http://dx.doi.org/10.2172/1196195.
Texto completo da fonteHurricane, O. High-foot Implosion Workshop (March 22-24, 2016) Report. Office of Scientific and Technical Information (OSTI), maio de 2016. http://dx.doi.org/10.2172/1258520.
Texto completo da fonteSauppe, Joshua. The Cylindrical Implosion Platform: Recent Results and Next Steps. Office of Scientific and Technical Information (OSTI), junho de 2020. http://dx.doi.org/10.2172/1631563.
Texto completo da fonteSerrano, Jason Dimitri, Alexander S. Chuvatin, M. C. Jones, Roger Alan Vesey, Eduardo M. Waisman, V. V. Ivanov, Andrey A. Esaulov et al. Compact wire array sources: power scaling and implosion physics. Office of Scientific and Technical Information (OSTI), setembro de 2008. http://dx.doi.org/10.2172/941403.
Texto completo da fonteAkkor, Gun, John S. Baras e Michael Hadjitheodosiou. A Feedback Implosion Suppression Algorithm for Satellite Reliable Multicast. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2003. http://dx.doi.org/10.21236/ada637177.
Texto completo da fonteHurricane, O. The high-foot implosion campaign on the National Ignition Facility. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1129989.
Texto completo da fonteKline, John L. Maximizing 1D “like” implosion performance for inertial confinement fusion science. Office of Scientific and Technical Information (OSTI), julho de 2016. http://dx.doi.org/10.2172/1261806.
Texto completo da fonteBorovina, Dan, e Eric Brown. The Trinity High Explosive Implosion System: The Foundation for Precision Explosive Applications. Office of Scientific and Technical Information (OSTI), janeiro de 2021. http://dx.doi.org/10.2172/1764181.
Texto completo da fonte